The Lazy Student and the Computer Architect

ISPASS-05 Technical Panel
March 21, 2005

Doug Burger
Computer Architecture and Technology Laboratory
Department of Computer Sciences
The University of Texas at Austin



Discussion of Trends

Frequency is obviously slowing
— 40% per year since 1990, half due to pipelining, half devices
— Effects: froze ISAs, particularly in academic research
— Exacerbated memory latencies and dynamic power limits quoc&ly
— Pipelining pretty much done, devices may slow due to leakage
— Clocks eventually going the other way?
Power is now a constraint just like area
— Here is your power and area budget, how much performance can You get
Leakage will create new problems and opportunfbesrchitects
— Transistors are no longer free each generation
— May have 10B on a chip, but only 500M can be powered up
Wire delays continue to get worse
Don’t believe uniprocessor performance claims
— Who saw the web coming?



The times, they are a’changing

Big changes underway in our field, for all the aisteasons

— Wires, power, complexity, workloads, costs, reliability, mgmatencies,
blah, blah, etc., etc.

How should we evaluate future directions giveroélihese strains?

Follow the Lazy Student!

What do students do?
— Learn from the past ... so should we when projecting new models.

What do lazy people do?
— Minimize effort ... so should we when designing new interfaces.



Learn from the Past

 We have to ask ourselves when re-proposing an old model ...

what has changed?

— How often do smart people work on a hard problem for two decailas, f
solve the problems, and then all of a sudden the problem is solirezl in

conventional context?
— Almost never!

« Good examples from recent history:
— VLIW - what changed to make IA-64 viable whereadWldidn't
work the first few times?
— CMPs - parallel programming has always been jusirad the corner
» Every time the market has voted, it has voted for uniprocgssor
* 90M-transistor, single-core Pentium IV, or 450 8086 processors?

 What is different now?



It's Good to Be Lazy

o Key goal is to minimize effort

Programmer laziness is always underestimated (not pe@rati
Architect’s proposing programming models is dangerous
Compiler effort often underestimated by microarchitects
Hardware effort now driven by power

DId we really hit a complexity wall in design effort (probablose)

« Future systems must renegotiate interfaces tonmueil effort at multiple
levels

VLIW was too much compiler effort (wrong burdens on the compiler)
Wide-issue RISC/CISC too much hardware effort (power)

Leakage will create new metrics for effort (things jushgp®n)

CMPs are too much effort for most programmers

We must re-negotiate these interfaces!

Concurrency is key, but not the types that people typidaikt (i.e. what is
single thread performance?)



Conclusions

We have to get concurrency as easily as possible

Must re-negotiate compiler/hardware interfaces significantly
— Anything done in the compiler is energy-free attime!

Must re-negotiate programming models/parallel architecture
interfaces

— Lots of interesting work

— Speculative locking, transactions

— Vectors/threads/speculation/SIMD/Other and mix!

General-purpose computing will continue
— The markets under it may shift
— People will find ways to use the performance

Need to convey the need for innovative research to the wider
community



