
Accelerating Architecture
Research

Visiting Faculty

CSG Group

MIT

Principal Investigator

RAMP Project

Joel Emer, Ph.D.

Intel Fellow

VSSAD Group

Intel

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY
OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE
SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

This document may contain information on products in the design phase of development. The information here is subject to change This document may contain information on products in the design phase of development. The information here is subject to change
without notice. Do not finalize a design with this information.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that
relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any
license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property
rights.

Wireless connectivity and some features may require you to purchase additional software, services or external hardware.

Nehalem, Penryn, Westmere, Sandy Bridge and other code names featured are used internally within Intel to identify products that are in
development and not yet publicly announced for release. Customers, licensees and other third parties are not authorized by Intel
to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code
names is at the sole risk of the user

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate
performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration
may affect actual performance.

Intel, Intel Inside, Pentium, Xeon, Core and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2009 Intel Corporation.

Acknowledgements

Arvind – MIT

Michael Pellauer – MIT

Murali Vijayaraghavan – MIT

Michael Adler – Intel

4/28/2009 Accelerating Architeture Research3

Angshuman Parashar - Intel

ZhiHong Yu – Intel

Tao Wang – Intel

Derek Chiou – UT – Austin

Krste Asanovic - Berkeley

Scientific Research

Take hypothesis about environment

Design experiment

Run experiment and quantify

Interpret results

4/28/2009 Accelerating Architeture Research4

Interpret results

If necessary, create new hypothesis

Systems Research

Take hypothesis about environment

Design experiment

Run experiment and quantify

Interpret results

4/28/2009 Accelerating Architeture Research5

Interpret results

If necessary, create new hypothesis

Systems Research

Take hypothesis about environment

Design Experiment - pick baseline design and workload

Run experiment and quantify

Interpret results

4/28/2009 Accelerating Architeture Research6

Interpret results

If necessary, create new hypothesis

Systems Research

Take hypothesis about environment

Design Experiment - pick baseline design and workload

Run experiment and quantify – run model or measure hardware

Interpret results

4/28/2009 Accelerating Architeture Research7

Interpret results

If necessary, create new hypothesis

Systems Research

Take hypothesis about environment

Design Experiment - pick baseline design and workload

Run experiment and quantify – run model or measure hardware

Interpret results

4/28/2009 Accelerating Architeture Research8

Interpret results

If necessary, propose new design

Outline

• An architecture research challenge

• A possible way to address that challenge

4/28/2009 Accelerating Architeture Research9

• Making that approach feasible

Transistor Count

1.E+03

1.E+05

1.E+07

1.E+09

1970 1980 1990 2000 2010 2020

2.0x

Feature Size (um)

0.01

0.1

1

10

1970 1980 1990 2000 2010 2020

0.70x

0.79x

Moore’s Law at Intel

4/28/2009 Accelerating Architeture Research10 2008.06.3010

1970 1980 1990 2000 2010 2020

Frequency (MHz)

1

10

100

1000

10000

100000

1970 1980 1990 2000 2010 2020

1.5x

2.0x

CPU Power (W)

10

100

1000

1990 1995 2000 2005 2010 2015

1.4x

1970 1980 1990 2000 2010 2020

Power trend not Power trend not
sustainablesustainable

Many-core processors

64 MB Cache

– 64 byte blocks

� 1M blocks

Replace each block 10X

– 4 miss / 1000 instructions

core

core

core

core

cache

cache

cache

cache

4/28/2009 Accelerating Architeture Research11

– 4 miss / 1000 instructions

� 2.5B instructions

Simulation

– 10K instructions/sec

� over 2.5 days

cache cache

cache

cache

cache

cache

core

core

core

core

Motivation

Qureshi

et al.

Isci

et al.

Nesbit

et al.

4/28/2009 Accelerating Architeture Research12

Source Ipek Engin

Field Programmable Gate Arrays

LUT

Latch

4/28/2009 Accelerating Architeture Research13

RAM

Research Accelerator for
MultiProcessors

Goal: FPGA emulation of large-scale MPs

• easy to put together experimental MP designs

• fast enough to support synergistic research in SW

Sharing and spreading the technology

• scalable FPGA emulation fabric

• library of composible architecture modules

• “glue” for instrumentation and interfacing

4/28/2009 Accelerating Architeture Research14

• “glue” for instrumentation and interfacing

• reference starter systems

Multi-university collaboration:

• David Patterson (UCB), Arvind (MIT), Krste Asanovíc (MIT), Derek
Chiou (UT), Joel Emer (Intel/MIT), James Hoe (CMU), Christos
Kozyrakis(Stanford), Shih-Lien Lu (Intel), Mark Oskin (UW), Jan
Rabaey (UCB), Jose Renau (UCSC) and John Wawrzynek (UCB)

RAMP Emulation Fabric

Generation 1: Berkeley Emulation Engine 2 (BEE2)

• 5 Virtex II-70, 18 banks DDR2-400 memory, 20 10GigE conn.

4/28/2009 Accelerating Architeture Research15

Generation 2: RAMP2/BEE3

• 4 Virtex-5-110, 64-GByte DDR, Infiniband, PCI-express

• specifically designed with RAMP applications in mind

• Chuck Thacker/Microsoft is leading the charge and paying the NRE

• Xilinx is supporting a large, shared remote-access cluster to be built

3 Reference Designs

Transactional Memory RAMP (Red)

• 8 CPUs with 32KB L1 data-cache with Transactional Memory

• Led by Kozyrakis at Stanford (based on Stanford TCC)

Message Passing RAMP (Blue)

• 768 Microblaze softcores over 16 BEE2 boards

• NAS benchmarks (MPI) and Internet Services (LAMP)

4/28/2009 Accelerating Architeture Research16

• NAS benchmarks (MPI) and Internet Services (LAMP)

• Led by Patterson and Wawrzynek at Berkeley

Cache Coherent RAMP (White/Purple)

• Shared memory/Cache coherent (ring-based)

• Led by Chiou at UT and Oskin at UW

and more

please see [Wawrzynek, et al. IEEE Micro, Mar 2007]

Definitions

• Functional Emulator – A circuit functionally equivalent to a
design, but which does not provide any insights on any specific
design metrics.

• Prototype (or Structural Emulator) – A logically isomorphic
and functionally equivalent representation of a design – often
implemented in a different technology, e.g., FPGAs.

4/28/2009 Accelerating Architeture Research17

implemented in a different technology, e.g., FPGAs.

• Model – An abstract representation of a design sufficiently
logically and functionally equivalent to that to allow estimation
of design metrics of interest, e.g., performance, power or
reliability.

Prototype Example

Register File with 2 Read Ports, 2 Write Ports

• Reads take zero clock cycles

• Direct configuration onto FPGA: 9242 slices, 104 MHz

rd_addr1
CC 1 CC 2

4/28/2009 Accelerating Architeture Research18

2R/2W
Register

File

rd_val1

rd_val2

rd_addr2

wr_addr1
wr_val1

wr_addr2
wr_val2

CC 1 CC 2

rd_addr1 A C

rd_val1 V(A) V(C)

rd_addr2 B D

rd_val2 V(B) V(D)

Performance Model Example

Simulate the circuit using synchronous BlockRAM

• First do reads, then serialize writes

• Only update model time when all requests are serviced

• Results: 94 slices, 1 BlockRAM, 224 MHz

• Simulation rate is 224 / 3 = 75 MHz (FPGA-to-Model Ratio)

Model CC 1

4/28/2009 Accelerating Architeture Research19

Model CC 1

FPGA CC: 1 2 3

rd_addr1 A A A

rd_val1 V(A) V(A)

rd_addr2 B B B

rd_val2 V(B)

FPGA Performance Model Metrics

FPGA cycle to Model cycle Ratio (FMR):

Simulator Frequency:

FMR =
Cycles Model

Cycles FPGA

4/28/2009 Accelerating Architeture Research20

Frequency simulator =
FMR

Frequency FPGA

Asim Ports in Software

FET DEC EXE MEM WB22

11
11 22

11

22

Used in software Asim performance models

4/28/2009 Accelerating Architeture Research21

Used in software Asim performance models

• All communication goes through Ports

• Ports have a model time latency

• Beginning of a model cycle a module reads all Ports

• End of a model cycle write all Ports

Related: RAMP RDL channels, UT Fast Connectors

Software Simulation

Step FET DEC EXE MEM WB

0 A

1 A

2 NOP

3 NOP

4 NOP

5 NOP

4/28/2009 Accelerating Architeture Research22

5 NOP

6 B

7 B

8 A

9 A

10 NOP

= model cycle

Barrier Synchronization

FPGA CC FET DEC EXE MEM WB

0 A NOP NOP NOP NOP

1 A

2 A

3 B A NOP NOP NOP

4 B A

5 A

4/28/2009 Accelerating Architeture Research23

5 A

6 C B A NOP NOP

7 B

8 D C B A NOP

9 D

10 D

= model cycle

A-Ports Distributed Synchronization

FPGA
CC

FET DEC EXE MEM WB

0 A NOP NOP NOP NOP

1 B A NOP NOP NOP

2 C B A NOP NOP

3 D B A NOP

4 E (full) B A

5 B A

long-running ops
can overlap

run-ahead in time
until buffering fills

4/28/2009 Accelerating Architeture Research24

6 B A

7 C B A

8 F D C B A

9 G (full) D C B

10 D C

11 D

12 D

13 E D

14 F E D

Observed results of simulation do not change!

HAsim: Current status - models

• RISC ISA functional model operating
– Full user-mode RISC ISA
– Pipelined multi-phase instruction execution
– Supports speculative OOO design

• Physical Reg File and ROB
• Speculative rewinds
• Full virtually addressed memory

• Instruction-per-cycle model
– Runs full SPECMark benchmarks

4/28/2009 Accelerating Architeture Research25

• In-order pipeline
– Supports pipeline flow control / branch mis-speculation
– Simple cached memory hierarchy
– Runs full SPECMark benchmarks

• Simple out-of-order (R10K-like) model
– Four wide super-scalar
– Supports out-of-order instruction issue
– Ran full SPECMark benchmarks

FPGA Modeling

• The FPGA Modeling Promise
– Raw speed of today’s FPGAs: 100-400 MHz

– Estimated FMR: 10

� Frequency Simulator = 100 /10 -> 10 MHz

4/28/2009 Accelerating Architeture Research26

• The FPGA Modeling Trap
– Hardware design is hard

Simulation Tradeoffs

Speed of Simulation

4/28/2009 Accelerating Architeture Research27

Accuracy Modeling
Time

Simulation on FPGAs

Speed of Simulation

4/28/2009 Accelerating Architeture Research28

Accuracy

Common Infrastructure

• Modularity

• Support utilities

4/28/2009 Accelerating Architeture Research29

• Hybrid Modules

Why modularity?

• Speed of model development

• Shared components between products

• Reuse across generations

• Encourages isomorphism to design

• Improved fidelity

4/28/2009 Accelerating Architeture Research30

• Improved fidelity

• Facilitates speed/fidelity trade-offs

• Architectural experimentation

• Factorial development and evaluations

• Sharing

AWB Module Hierarchy

S

MC N

4/28/2009 Accelerating Architeture Research31

D R X C WF

B

AWB Module Selection

B

B

S

MC N

4/28/2009 Accelerating Architeture Research32

B

B

D R X C WF

B

B

S

MC NC M N

Module Selection

S
B

B

4/28/2009 Accelerating Architeture Research33

D R X C WF D R X C WF

BB

B

B

B

Module Replacement

B

B

S

MC N

4/28/2009 Accelerating Architeture Research34

B

B

B

D R X C WF

B

X

(H)ASIM Module Hierarchy

4/28/2009 Accelerating Architeture Research35

Communication:
A modularity speedbump

C

4/28/2009 Accelerating Architeture Research36

D R X C WF

N N

Soft connections:
Flattening the speedbumps

S D
A-out A-in

4/28/2009 Accelerating Architeture Research37

S D

Interface Layers

unModel domain

Flow Control

Buffering

Timing

Servers

Model domain

Units

Services

Point-to-point
Ring
Tree
Bus

Point-to-point
One-to-many
Many-to-one

Intra-FPGA
Inter-FPGA
CPU-to-FPGA

Direct + Client/Server One-way
Client/Server

Logical Topology

Physical Network

Physical Link

Communication
domain

From RAMP Component Interface Group

Multi-layer implementations

Flow Control

Buffering

Timing

Units

FAST connectors

A-ports

Presentation

Logical Topology

Physical Network

Physical Link

RDL channels

“Soft connections”

Bluespec (Asim-style) module

module [HAsim_module] mkCache#() (Empty);

Port#(Addr) req_port <- mkSendPort(‘a2cache’);
Port#(Bool) resp_port <- mkRecvPort(‘cache2a’);

TagArray tagarray <- mkTagArray();

rule cycle(True);
Maybe#(Addr) mx = req_port.get();

if (isValid(mx))

4/28/2009 Accelerating Architeture Research40

if (isValid(mx))
resp_port.put(tagarray.lookup(validValue(mx)));

endrule
endmodule

Bluespec (Asim-style) submodule

module mkTagArray(TagArray);

RegFile#(Bit#(12),Bit#(4)) tagArray<- mkRegFileFull(...);

method Bool lookup(Bit#(16) a);
return (tagArray.sub(getIndex(a)) == getTag(a));

endmethod

function Bit#(4) getTag(Address x);
return x[15:12];

endfunction

4/28/2009 Accelerating Architeture Research41

function Bit#(12) getIndex(Address x);
return x[11:0];

endfunction

endmodule

Support functions - stats

Module

Stat Counter

Module

module mkCache#(...) (Empty);
...

cache_hits <- mkStat(...);
...
hit=tagarray.lookup(...);
if (hit)

cache_hits.increment();

4/28/2009 Accelerating Architeture Research42

Stat Counter

Module

Stat Counter

Stat Dumper

endif

...
endmodule

Cycle Display - 2Dreams

4/28/2009 Accelerating Architeture Research43

Support functions - events

Module

Event Reg

Module

module mkCache#(...) (Empty);
...

cache_event <- mkEvent(...);
...
hit=tagarray.lookup(...);
cache_event.report(hit);

...

4/28/2009 Accelerating Architeture Research44

Event Reg

Module

Event Reg

Event Dumper

endmodule

Hybrid Modules/Virtual Platform

FPGA Modules

Virtual Platform

Platform Interface

ExeDecodeFetch

Func

Model
ControlDecode

Front Panel Memory

4/28/2009 Accelerating Architeture Research45

Channel IO

RRR Client + Server

Platform Interface

RRR Client + Server

HardwareSoftware

MemoryFront Panel

Physical Device DriversKernel Drivers

Channel IO

Source: Intel, Angshuman Parashar - VSSAD

Hybrid Instruction Emulation

F
P
G

A

Execute

Functional
Cache

Execute

RRR
Layer

…
…

4/28/2009 Accelerating Architeture Research46

S
o
ft

w
a
re

Time

Emulation
Server

Instruction
Simulator

Memory
Server

Emulation
Server

Instruction
Simulator

Source: Intel, Michael Adler - VSSAD Implemented in a day

HAsim: Current status - infrastructure

• Build infrastructure
– Model specification (using .awb files and apm-edit)

• Supports public/private implementation files and parameters (static)

– Model configure, parallel compile, and synthesis flow operational

… and available from awb

• Operational support structures
– Stall (bounded FIFO) ports

– Flow-control ports

– Ports - distributed synchronization

4/28/2009 Accelerating Architeture Research47

– Ports - distributed synchronization

– Named connections - autoconnecting across synthesis boundaries

– Point-to-point and ring-based soft connections

– Global Controller – run control from host via RRR

– Events – dump to file via RRR

– Stats – dump to file via RRR

– Debug print – to host console via RRR

• RRR hybrid modules
– Running on Hi-Tech Global PCIe board and in simulation

Nallatech ACP Platform

4/28/2009 Accelerating Architeture Research48

FSB

Other efforts (partial list)

• Intel
– Pentium FPGA - Shih-Lien Lu

– Dragonhead – hardware trace driving FPGA cache models

– Co-sim – SoftSDV driving FPGA cache model

• Academic

4/28/2009 Accelerating Architeture Research49

• Academic
– RAMP – Dave Patterson, Krste Asanovic, ….(me)

– PROTOFLEX – James Ho - CMU

– FAST – Derek Chiou – UT-Austin

– UNUM – Nirav Dave, Michael Pellauer - MIT

