
4/1/2010

1

Intel® Xeon 5500 Platforms,
Integrated Memory Controllers and

NUMANUMA
David Levinthal, Julia Fedorova, Dmitry Ryabtsev

SSG/DPD/PAT

* Intel, the Intel logo, Intel Core and Core Inside are trademarks of Intel Corporation in the U.S. and other countries.

Agenda

NUMA and Enabling: Overview

Topology Overview

BIOS Options

OS dependent NUMA concerns

Identifying memory locality (and lack

4/1/20102

Identifying memory locality (and lack
thereof) on Intel® Xeon 5500 processors

Summary
Intel and core are a trademark or registered trademark of Intel Corporation or its subsidiaries in the United
States or other countries

4/1/2010

2

DP Platform dominant validation vehicle

Intel® Xeon™ 5500
Platforms

DDR3DDR3
C0 C1 C2 C3 C0 C1 C2 C3

8M LLC

QPI QPI

8M LLC

QPI IMCQPIIMC

4/1/20103

Discrete
Gfx

I/O Hub

NUMA, Quickpath and
Intel® Xeon™ 5500 Platforms

Quickpath Interfaces greatly increase memory
bandwidth of our platforms

Integrated memory controllers on each socket
access dimmsaccess dimms
• Quickpath interconnctions provide cache

coherency
• Bandwidth improves by ~4X

Bandwidth improvement comes at a price
• Non uniform memory access

4/1/20104

y
• Latency to dimms on remote sockets

is ~2X larger
Pealing away the Bandwidth layer
reveals the NUMA Latency layer

4/1/2010

3

NUMA Modes on DP Systems
Controlled in BIOS
Non Numa
• Even/Odd lines assigned to sockets 0/1Even/Odd lines assigned to sockets 0/1

– Line interleaving

NUMA mode
• First Half of memory space on socket 0

• Second half on socket 1

4/1/20105

• Default on Intel® Xeon™ 5500 Processors

NON-NUMA/NUMA Timings for Specomp*
and NAS* Parallel Benchmarks

NN/N timing

1.6

0.2

0.4

0.6

0.8

1

1.2

1.4

4/1/20106

0

bt.C cg.C
ep .C is.C lu.C

lu-h p.C sp.C
ua .C

wu pwis e
swim

mgrid
ap plu

ga lg el

eq uake ap si
ga for t

fm
a 3d ar t

ammp

* Other names and brands may be claimed as the property of others.

4/1/2010

4

Non Uniform Memory Access and
Parallel Execution
Process parallel is intrinsically NUMA friendly

• Affinity pinning maximizes local memory access

• MPI

• Parallel submission to batch queues

• Standard for HPC

Shared memory threading is more problematic

• Explicit threading, TBB, openMP*

• NUMA friendly data decomposition (page based) has

4/1/20107

• NUMA friendly data decomposition (page based) has
not been required

• OS scheduled thread migration can aggravate situation

* Other names and brands may be claimed as the property of others.

HPC Applications will see
Large Performance Gains due to
Bandwidth Improvements
A remaining performance bottleneck may be
due to non uniform memory access latency

Intel® PTU data access profiling feature was
designed to address NUMA

• Intel® Xeon™ 5500 processors events were
designed to provide the required data

4/1/20108

4/1/2010

5

Data Access Events on Intel® Xeon™ 5500
processors Reveal NUMA Access Pattern

“miss” events are inclusive
– Sum over all data sources and their individual

latencieslatencies

Intel® Xeon™ 5500 processor Precise events
are exclusive

Per data source

4/1/20109

Data Access Events Reveal NUMA Access
Pattern

4/1/201010

4/1/2010

6

Controlling NUMA Data Locality on Linux*
and Windows*

Linux* assigns physical pages on “first touch”
– ie buffer initialization not malloc
– If each thread initializes its data, things are good, g g
– Can also use numactl or numalib

Windows assigns physical pages with
“allocation”

– VirtualAlloc works like malloc on Linux*
• Physical pages assigned at first use

– malloc & VirtualAllocExNuma allocation must be

4/1/201011

malloc & VirtualAllocExNuma allocation must be
parallelized
• Buffers are no longer contiguous linear address ranges
• Much MUCH harder

* Other names and brands may be claimed as the property of others.

Data Locality, Threaded Applications and
Bandwidth
Consider a threaded triad
int triad(int len, double *a, double *b,

double *c, double *x);
int i,bytes = 24;int i,bytes 24;
#pragma omp parallel
{
#pragma omp for private (i)
#pragma vector nontemporal
for(i=0;i<len;i++)a[i]=b[i]+x*c[i];
}
return bytes

4/1/201012

Parallelizes the work
function called 1000 times, len=8192000
~ 1B cachelines written NT, 2B read

4/1/2010

7

Data Locality, Threaded Applications and
Bandwidth
Run an OpenMP* triad under my usual mini_app
driver, the resulting BW is only

~ 5bytes/cycle for 8 threadsy y

Running in Non Numa Mode results in
~8.5 Bytes/cycle

Why?

4/1/201013

Default Version Allocates Buffers on
Thread 0

Using only one Memory Controller
* Other names and brands may be claimed as the property of others.

Performance Events and NUMA Sources

• Offcore_Response_0
8 flavors of Request Type X 8 flavors of $line Source

+ ll bi ti– + all combinations..
(~65K possible programmings)

• One “gotcha”…
NT stores to local Dram
appear to go to another core’s cache

4/1/201014

appear to go to another core s cache
(data source = 2 instead of 0x40)

4/1/2010

8

PTU Display Shows Local and Remote
Access for OpenMP Triad

4/1/201015

Need to Distribute “Allocation”
“Allocate” on First Touch
Original allocation

buf1 = (char *) malloc(DIM*(sizeof (double))+1024);
buf2 = (char *) malloc(DIM*(sizeof (double))+1024);
buf3 = (char *) malloc(DIM*(sizeof (double))+1024);buf3 = (char *) malloc(DIM*(sizeof (double))+1024);
a = (double *) buf1;
b = (double *) buf2;
c = (double *) buf3;
for(num=0;num<len;num++)
{

a[num]=10.;
b[num]=10.;
c[num]=10.;

4/1/201016

c[u] 0 ;
}

Initialization must also be done in
Parallel

* Other names and brands may be claimed as the property of others.

4/1/2010

9

Parallel “Allocation” for Linux*
Requires Parallel Initialization
Parallel allocation

buf1 = (char *) malloc(DIM*(sizeof (double))+1024);
buf2 = (char *) malloc(DIM*(sizeof (double))+1024);
buf3 = (char *) malloc(DIM*(sizeof (double))+1024);
a (do ble *) b f1a = (double *) buf1;
b = (double *) buf2;
c = (double *) buf3;

#pragma omp parallel
{
#pragma omp for private(num)

for(num=0;num<len;num++)
{

a[num]=10.;
b[num]=10 ;

4/1/201017

b[num]=10.;
c[num]=10.;

}

}

* Other names and brands may be claimed as the property of others.

Event Triad_omp Triad_NUMA

CPU_CLK_UNHALTED.THREAD 2.23E+11 1.17E+11

CPU_CLK_UNHALTED.THREAD;Socket 0 7.51E+10 5.84E+10

CPU_CLK_UNHALTED.THREAD;Socket 1 1.48E+11 5.83E+10

OFFCORE_RESPONSE_0.ANY_REQUEST.ANY_LOCATION 3.13E+09 3.11E+09

OFFCORE_RESPONSE_0.ANY_REQUEST.ANY_LOCATION;Socket 0 1.56E+09 1.56E+09

OFFCORE_RESPONSE_0.ANY_REQUEST.ANY_LOCATION;Socket 1 1.56E+09 1.55E+09

OFFCORE_RESPONSE_0.ANY_REQUEST.LOCAL_CACHE_DRAM 1.56E+09 3.11E+09
OFFCORE_RESPONSE_0.ANY_REQUEST.LOCAL_CACHE_DRAM;
Socket 0 1.55E+09 1.55E+09
OFFCORE_RESPONSE_0.ANY_REQUEST.LOCAL_CACHE_DRAM;
Socket 1 8000000 1 55E+09

4/1/201018

Socket 1 8000000 1.55E+09

OFFCORE_RESPONSE_0.ANY_REQUEST.REMOTE_DRAM 1.55E+09 400000

OFFCORE_RESPONSE_0.ANY_REQUEST.REMOTE_DRAM;Socket 0 1.55E+09 300000

OFFCORE_RESPONSE_0.ANY_REQUEST.REMOTE_DRAM;Socket 1 100000 100000

Note socket 0/1 switch between PTU runs

4/1/2010

10

Event Triad_omp Triad_NUMA

CPU_CLK_UNHALTED.THREAD 2.23E+11 1.17E+11

CPU_CLK_UNHALTED.THREAD;Socket 0 7.51E+10 5.84E+10

CPU_CLK_UNHALTED.THREAD;Socket 1 1.48E+11 5.83E+10

OFFCORE_RESPONSE_0.ANY_REQUEST.ANY_LOCATION 3.13E+09 3.11E+09

OFFCORE_RESPONSE_0.ANY_REQUEST.ANY_LOCATION;Socket 0 1.56E+09 1.56E+09

OFFCORE_RESPONSE_0.ANY_REQUEST.ANY_LOCATION;Socket 1 1.56E+09 1.55E+09

OFFCORE_RESPONSE_0.ANY_REQUEST.LOCAL_CACHE_DRAM 1.56E+09 3.11E+09
OFFCORE_RESPONSE_0.ANY_REQUEST.LOCAL_CACHE_DRAM;
Socket 0 1.55E+09 1.55E+09
OFFCORE_RESPONSE_0.ANY_REQUEST.LOCAL_CACHE_DRAM;
Socket 1 8000000 1 55E+09

4/1/201019

Socket 1 8000000 1.55E+09

OFFCORE_RESPONSE_0.ANY_REQUEST.REMOTE_DRAM 1.55E+09 400000

OFFCORE_RESPONSE_0.ANY_REQUEST.REMOTE_DRAM;Socket 0 1.55E+09 300000

OFFCORE_RESPONSE_0.ANY_REQUEST.REMOTE_DRAM;Socket 1 100000 100000

5.1 B/cyc vs 8.5 B/cyc vs 12.5 B/cyc
on a poorly tuned machine

OpenMP and Core Affinity Pinning

Export KMP_AFFINITY=compact,0,verbose
will pin affinity of threads

Just not reproducibly (per socket) on Red Hat
5 1 f o to 5.1 from run to run

Causing problems in multi run PTU collections

Problem is that an app does not use OMP
runtime libs to pin affinity until there is a
#pragma parallel {}

4/1/201020

You must add this around first instruction to pin
affinity of Main thread

4/1/2010

11

Multi-thread Scaling and NUMA

When measuring scaling between 4 and 8
threads (assuming no SMT) the affinity of the 4
threads matters

4 threads all on one socket has the same LLC 4 threads all on one socket has the same LLC
cache size/core as 8 threads

BUT

2 threads/socket has closer to the same
memory BW as the 8 thread run

Thus 4 >8 scaling will always have a non

4/1/201021

Thus 4->8 scaling will always have a non
scaling contribution due to one of these 2
effects

Per Socket Display + Data Source events
Show NUMA /Cross Socket Traffic

4/1/201022

4/1/2010

12

Indirect Addressing, Locality and Latency
(Diff Eq on Non Uniform Grid, Oil Res)
Multi-dimensional array access can cause large
address gaps in data decomposition.

This can make mapping NUMA home node-This can make mapping NUMA home node
>pages->data decomposition ranges

Challenging
Ex: color = decomposition = thread

64.5K
Structures

4/1/201023

Default Initialization Breaks Array into 8
Contiguous Pieces 50% Non Local Access

4/1/201024

4/1/2010

13

Address Histogram for all Dram Accesses

4/1/201025

Filtering to a Single Thread Displays the
Data Decomposition

4/1/201026

4/1/2010

14

A Different Thread

4/1/201027

Using Only Precise Remote Dram Event
Only Half the entries shown
Gaps due to lack of events are suppressed

4/1/201028

4/1/2010

15

Using Only Precise Remote Dram Event
Only Half the entries shown
Gaps due to lack of events are suppressed

4/1/201029

Change Initialization to Follow Work Access
Pattern

Thread initialization with same access sequence
as work

Expect ~33% improvement
– 1/2 of accesses get lower latency by 2

Simple OMP ran in 14.3 cycles/cell

NUMA initialized version ran in 11.2 cycles/cell

E h i DTLB i hi h

4/1/201030

Every access has serious DTLB issues, which
don’t change with the improved NUMA layout

4/1/2010

16

Sampling View for Correctly Initialized
Array has no Remote Access

4/1/201031

Page Allocation Order Matters

Serially
initialized/allocated

Accessed with
complex pattern

avg Lat =230

Initialized/Allocated
and Accessed with

4/1/201032

complex pattern
avg Lat = 209

4/1/2010

17

Conclusions

NUMA will add complexity to software
performance analysis and optimization

We have the infrastructure to manage this

4/1/201033

Backup

4/1/201034

