Analyzing the Impact of Useless Write-Backs on the Endurance and Energy Consumption of PCM Main Memory

Santiago Bock, Bruce Childers, Rami Melhem, Daniel Mossé and Youtao Zhang University of Pittsburgh

Introduction

- Datacenters are growing in size and number
 - Energy consumption will cost \$7.4 billion in 2011
- Memory consumes 20% to 40% of energy in a typical server
 - Larger memories due to multi-core
 - Smaller transistor sizes leak more current
- PCM for main memory
 - ✓ Low static power due to non-volatility
 - Read performance comparable to DRAM
 - Better scalability than DRAM
 - × High energy cost of writes
 - Limited write endurance

Motivation

- A write-back is useless when its data is not used again
 - Avoiding useless write-backs requires future knowledge
- Idea: use application information
 - Memory allocator
 - Control flow analysis
 - Stack pointer
- Focus of this work
 - How many useless write-backs can be avoided?
 - What's the impact on endurance and energy consumption?

Outline

- Introduction
- Motivation
- What is Phase Change Memory?
- What are useless write-backs?
- How do we count useless write-backs?
- How much can we gain?
- Conclusions

Background on PCM Main Memory

- PCM writes
 - Modify physical state
 - Slow
 - High energy cost
 - Limited to 10⁶ to 10⁸
- Main memory architecture
 - L2 cache
 - Small DRAM cache (optional)
 - Large PCM main memory

Useless Write-Backs

Useless Write-Backs

- Detecting useless write-backs
 - Difficult to identify last read before a write
 - Use program information to detect dead memory locations
- Detecting dead memory locations depends on the type of memory region
 - Heap: use calls to malloc() and free()
 - Global: use control flow analysis
 - Stack: use the stack pointer

Analysis Framework

- Trace: address and type of each memory reference
- Analyzer: cache simulator and list of dead memory locations

Analysis for Heap Data

Analysis for Global Data

Analysis for Stack Data

Methodology

- SPEC CPU2006 benchmark suite
 - 26 benchmarks
 - 52 combinations of benchmark/input
- Pin collects traces
 - 100 billion instructions
- L2 Cache
 - 1MB
 - 8-way, LRU
- DRAM Cache
 - No cache, 8MB, 16MB, 32MB and 64MB
 - 16-way, LRU
- Cache line size
 - 8B (limit study), 32B, 64B and 128B

Experimental Results

- Categorization of benchmarks based on memory region
 - Heap intensive: more than 1 million object allocations
 - Global intensive: more than 4MB global size

Size of Global Region in Bytes

Heap (8-byte cache line)

Heap (Average Endurance Gains)

Heap (Average Energy Savings)

Global (8-byte cache line)

Global (Average Energy Savings)

Type of savings and DRAM cache size

Global (Average Energy Savings)

Stack

- Very few useless write-backs
 - Fraction of useless write-backs between 0% and 2.3%
 - Average endurance gains and energy savings between 0% and 0.1%
- Programs use a small part of the stack
 - 10KB to 20KB
 - Kept mostly in the cache
 - Few opportunities to evict dead data from the cache

Conclusions

- We showed that a considerable amount of write-backs are useless
- We showed there is potential
 - Up to 20% energy savings
 - Up to 26% endurance gains
- Next step: develop techniques to avoid useless write-backs
 - Low energy cost
 - Low performance impact

Thank you!

Questions?

sab104@cs.pitt.edu http://www.cs.pitt.edu/~sab104

