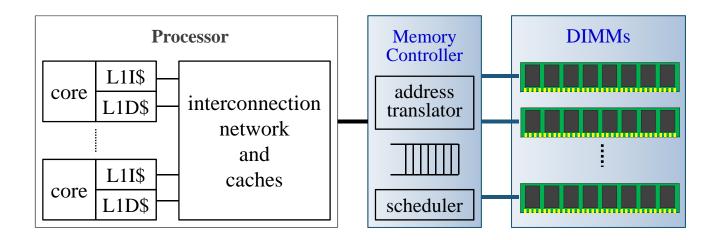
Memory Access Pattern-Aware DRAM Performance Model for Multi-core Systems

ISPASS 2011

Hyojin Choi*, Jongbok Lee+, and Wonyong Sung*

hjchoi@dsp.snu.ac.kr, jblee@hansung.ac.kr, wysung@snu.ac.kr

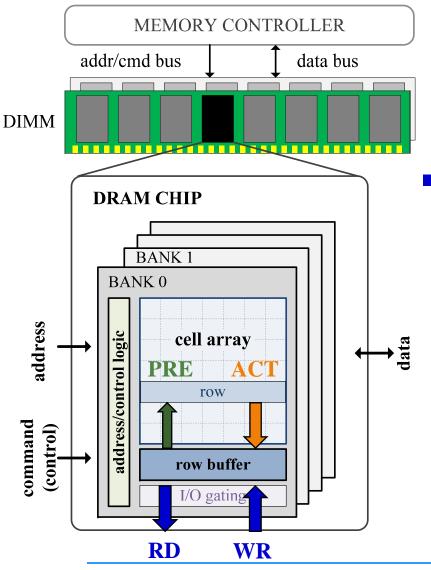

*Seoul National University, +Hansung University

Seoul, Korea

Introduction

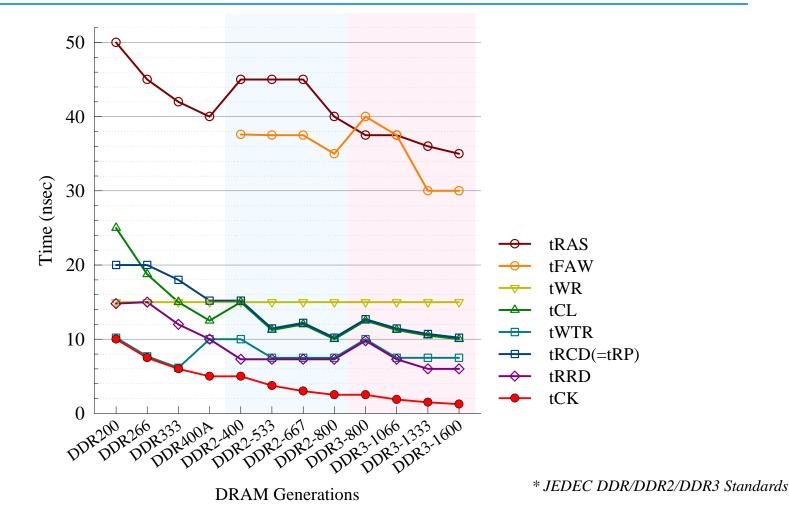
• The memory-wall problem in multi-core era

• The rate at which memory traffic is generated by an increasing number of cores is growing faster than the rate at which it can be serviced.



- Our research focuses on main memory subsystem design.
 This name are a substituted DDAM and a memory of the subsystem of the
- This paper proposes an analytical DRAM performance model.

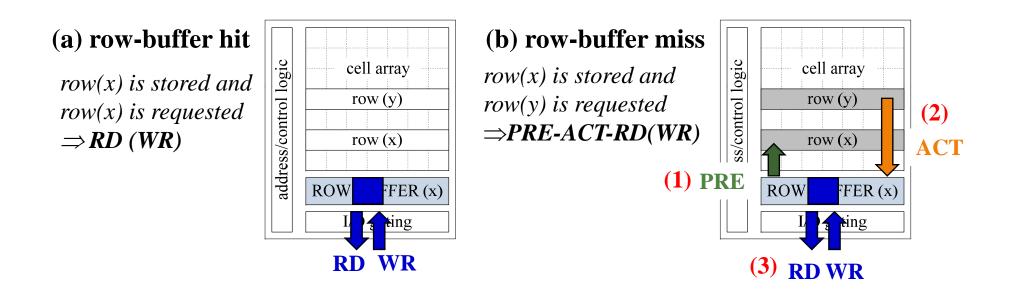
Outline


- Background
- Motivation
- Approach
- Objective
- Modeling Bank Busy Time
 - Minimum inter-command delays
 - Pattern parameters
 - Average bank busy time
- Evaluation Results
- Concluding Remarks

DRAM architecture

- Multiple banks (typically 4 or 8)
 - Each bank has cell array, row-buffer, and address/control logics
 - The address, command and data buses are shared by all banks
- DRAM operations
 - Activate (ACT)
 - an entire row data is read from the cell array and stored to the row-buffer (rowbuffer is open)
 - Precharge (PRE)
 - the contents of the row-buffer are restored to cell array (row-buffer is closed) and bitlines are precharged
 - *Read (RD)* or *write (WR)*
 - □ from/to the row-buffer

DRAM timing trends



 The goal is to find out an analytical model which can show the impact of each DRAM timing on the performance.

Multimedia Systems Lab. @ SoEE, SNU

Challenge

 DRAM access performance depends on a program's memory access behavior

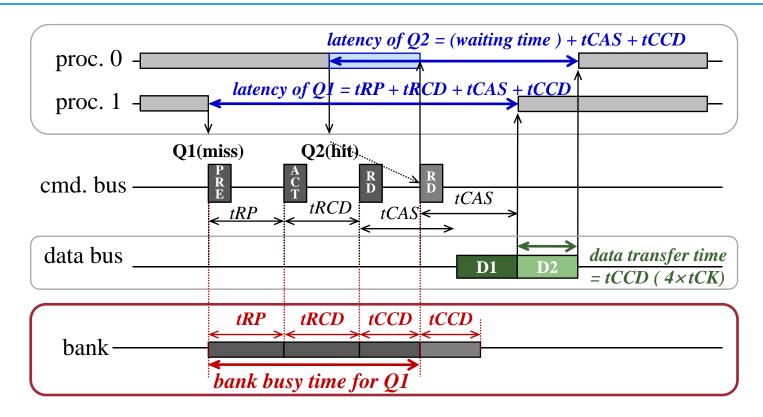
• The DRAM command chain generated to serve a memory request depends on the incoming request and on the row-buffer status (open or closed, row index if opened), which is determined by the previously serviced requests.

Objective

To find out an analytical model which has a form of

$$\chi = f(w, \tau)$$

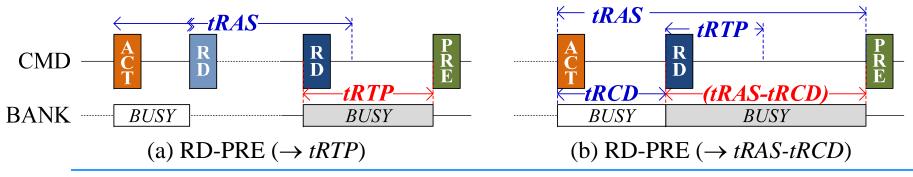
- χ : performance metric
- *w* : characteristics of memory access behavior
- τ : DRAM timings such as *tRP*, *tRCD*, *tRAS*, *tCCD*, ...
- f: a simple function of w and τ


Key questions

- What is the performance metric ?
- How to characterize the memory access behavior of a program ?
- What is the relationship between input parameters and the performance metric ?

Assumptions

- 1) One memory request is serviced by one column command
 - All memory references are cache misses.
 - cache block size = 64 Bytes, data bus width = 64 bits, burst length = 8
- 2) There are four DRAM commands: PRE, ACT, RD and WR
 - The effect of REF (refresh) to the access performance is negligible.
 - RDAP/WRAP (auto-precharge after RD/WR) are not generated when the memory controller adopts the open policy.
- 3) Open policy for row-buffer management
 - row-buffer misses \rightarrow PRE-ACT-RD, PRE-ACT-WR
 - row-buffer hits \rightarrow RD, WR
- 4) First-Ready First-Come First Served (FR-FCFS) scheduling
 - The row-buffer hit requests are prioritized miss ones to maximize data bus utilization.


Approach

- Memory access latency includes the queuing delay.
- Data transfer time is related with only *tCK* among DRAM timings.
- Modeling the time needed for a bank to service DRAM commands
- \rightarrow bank busy time

Bank busy time

- A bank is said to *busy* when it is not possible for the memory controller to issue any command to the bank due to timing constraints. Otherwise, a bank is in *idle* status.
- Considerations:
 - 1) simple : PRE ($\rightarrow tRP$), ACT ($\rightarrow tRCD$)
 - 2) dependency on the command that follows
 - $\Box \Rightarrow$ in a pair-wise fashion (minimum inter-command delays)
 - □ ex) RD-RD (\rightarrow *tCCD*) vs. RD-WR (\rightarrow *tRTW*)
 - 3) multiple timing constraints on PRE
 a ex) RD-PRE : it depends on the number RDs between ACT-PRE

Multimedia Systems Lab. @ SoEE, SNU

Minimum inter-command delays

The minimum inter-command delay can be defined for all possible DRAM command pairs based on DRAM timing constraints defined in the data sheet

DRAM command pair	min. inter-command delay
PRE-ACT	tRP
ACT-WR, ACT-RD	tRCD
WR-PRE	tCWL + tCCD + tWR
RD(x)-PRE	tRAS - tRCD - (x - 1)tCCD
RD(others)-PRE	tRTP
WR-WR	tCCD
RD-WR	tRTW
WR-RD	tCWL + tCCD + tWTR
RD-RD	tCCD

- \square RD(*x*) represents the consecutive *x* RD commands (x=1, ..., m)
 - $m = \lceil (tRAS-tRCD-tRTP)/tCCD \rceil (m=2, 3, 3, and 4 for DDR3-800/-1066/-1333/-1600) \rceil$
- RD(others) means the row-buffer miss cases which are not included in WR-PRE and RD(x)-PRE

Pattern parameters

- I := the number of occurrences of each DRAM command pair
 - They can be interpreted as characteristics of memory access streams
 cf) open-policy is assumed for the row-buffer management policy.

DRAM command pair	pattern parameters	main memory requests
PRE-ACT ACT-WR, ACT-RD	N_m	row-buffer misses
WR-PRE	N_{wp}	row-buffer miss after write
RD(x)-PRE	N_{rx}	row-buffer miss after x consecutive reads w/o write
RD(others)-PRE	N_{rt}	other cases for row-buffer miss
WR-WR	N_{ww}	write/hit request after write
RD-WR	N_{rw}	write/hit request after read
WR-RD	N_{wr}	read/hit request after write
RD-RD	N_{rr}	read/hit request after read

□ the number of row-buffer misses $(N_m) = N_{wp} + N_{rx} + N_{rt}$ □ the number of row-buffer hits = $N_{ww} + N_{rw} + N_{wr} + N_{rr}$

The proposed model

The bank busy time is a linear combination of the minimum intercommand delays and pattern parameters.

Bank busy time =
$$\sum_{i=1}^{n} N_i \times D_i$$

$$S_{\text{busy}} = tRP \cdot N_m$$

$$+ tRCD \cdot (N_m - \sum_{x=1}^m N_{rx})$$

$$+ tCCD \cdot (N_{ww} + N_{wr} + N_{rr} + N_{wp})$$

$$- \sum_{x=1}^m (x - 1)N_{rx})$$

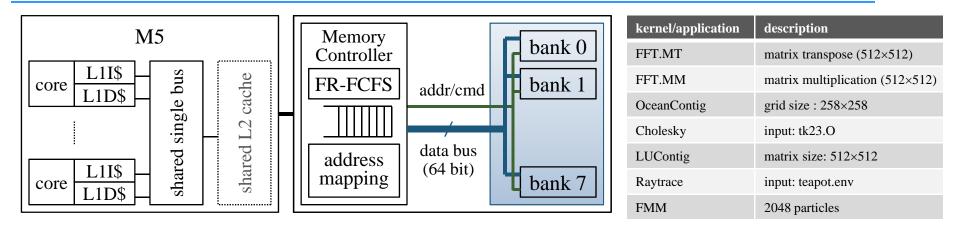
$$+ tCWL \cdot (N_{wr} + N_{wp})$$

$$+ tRTW \cdot N_{rw} + tWTR \cdot N_{wr}$$

$$+ tRAS \cdot \sum_{x=1}^m N_{rx}$$

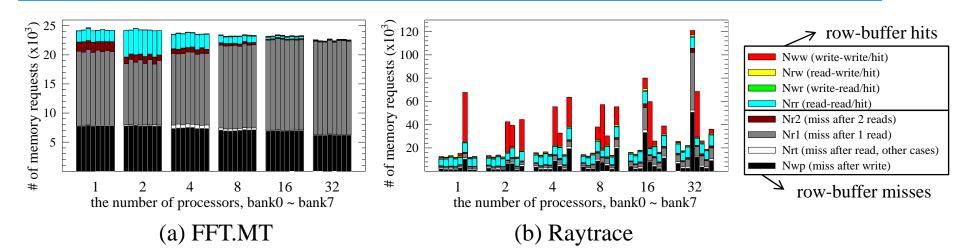
$$+ tWR \cdot N_{wp} + tRTP \cdot N_{rt}.$$

Average bank busy time

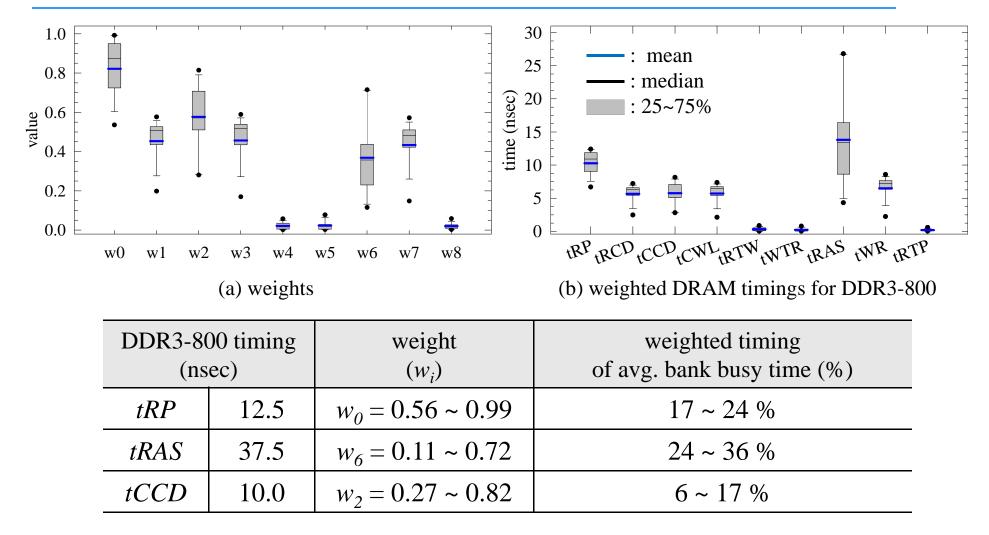

- I := the bank busy time per a memory request
 - *N* : the number of memory requests to a bank during program execution

Average bank busy time = $w_0 \cdot tRP + w_1 \cdot tRCD + w_2 \cdot tCCD + w_3 \cdot tCWL$ + $w_4 \cdot tRTW + w_5 \cdot tWTR + w_6 \cdot tRAS + w_7 \cdot tWR + w_8 \cdot tRTP$

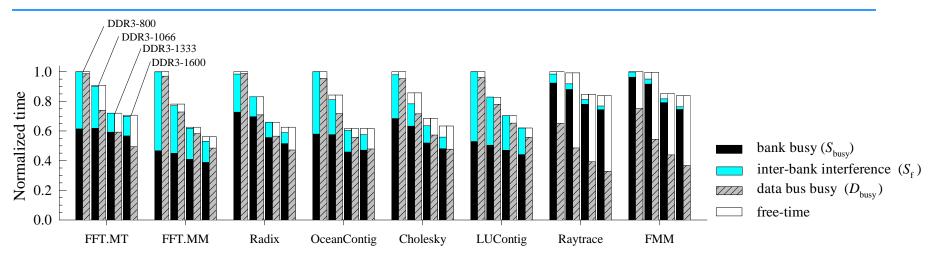
• , where
$$w_0 = N_m/N$$
 (row-buffer miss ratio)
 $w_1 = (N_m - \sum_{x=1}^m N_{rx})/N$
 $w_2 = (N_{ww} + N_{wr} + N_{rr} + N_{wp} - \sum_{x=1}^m (x-1)N_{rx})/N$
 $w_3 = (N_{wr} + N_{wp})/N$
 $w_4 = N_{rw}/N$
 $w_5 = N_{wr}/N$
 $w_6 = \sum_{x=1}^m N_{rx}/N$
 $w_7 = N_{wp}/N$
 $w_8 = N_{rt}/N$.


Multimedia Systems Lab. @ SoEE, SNU

Experimental setup


- Architecture simulator configuration (M5)
 - □ in-order processor model (P=1,2,...,64), 2 GHz
 - L1 cache : private, separate, 64 KB, 2-way, 64 Bytes, 1 cycle
 - L2 cache : shared, unified, 512 KB, 2-way, 64 Bytes, 20 cycles
 - □ shared bus with no overhead
- Main memory subsystem
 - □ a cycle-accurate DRAM timing simulator extension for M5
 - □ memory controller: FR-FCFS, [row:bank:col], open-policy
 - **2** Gbytes, 8 banks, DDR3-800/-1066/-1333/-1600, data bus width : 64 bit
- Seven multi-threaded workloads from SPLASH-2 benchmark

(1) Pattern parameters


- The pattern parameters are obtained during the simulation as shown in the figure.
 - Other results are included in the paper.
- Selecting representative pattern parameters for a workload.
 - when the memory accesses are distributed non-uniformly across banks.
 - 1) select a bank that has the maximum number of requests
 - 2) use the pattern parameters of that bank

(2) Impact of DRAM timings on the bank busy time

cf) average bank busy time = $w_0 \cdot tRP + w_1 \cdot tRCD + w_2 \cdot tCCD + w_3 \cdot tCWL + w_4 \cdot tRTW + w_5 \cdot tWTR + w_6 \cdot tRAS + w_7 \cdot tWR + w_8 \cdot tRTP$

(3) Sensitivity to DRAM clock frequency

- □ P=64 and without shared L2 cache (assuming intensive DRAM accesses)
- \Box $S_f :=$ bank idle time due to inter-bank interference (measured)
- □ Normalized to DDR3-800 model of each workload.

(Raytrace, FMM are excluded)	DDR3-800 (400 MHz)	DDR3-1600 (800 MHz)	diff (%)
Execution time	1.00	0.63	- 37 %
Data transfer time (D_{busy})	0.97	0.49	- 50 %
Inter-bank interference (S_f)	0.39	0.12	- 70 %
Bank busy (S _{busy})	0.60	0.48	- 20 %

Concluding remarks

- The proposed model enables quantitative analysis of the impact of DRAM timings on the access performance.
- The pattern parameters employed capture the characteristics of memory access behavior.
- It is expected to be a useful tool for providing DRAM timing guidelines in the early design stage of next DRAM standards.
- We plan to extend the model to include the amount of time delays due to inter-bank interference in our future work.