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e Most computer architecture research employ execution-driven simulation tools.
e Trace-driven simulation cannot capture the dynamic behavior of multithreaded

applications.
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Avoid computational requirements of simulated applications.
e Memory footprint.
e Disk space for input sets.

Simulate applications with non-accessible sources, but accessible
traces.

e Confidential/restricted applications.
Lower modeling complexity.
e Different host! and target? ISAs / endianness.

Problem: How to appropriately simulate multithreaded applications
using traces?

THost: system where the simulator executes.
2Target: system modeled in the simulator.




e Distinguish the user code (sequential code sections) from parallelism-

management operations (parops).

I Seq. code section [ parop call [ parop execution 77 Idle [l Switch
Task-based parallel applications Loop-based parallel applications
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e Capture traces for sequential code sections.

e Execution is independent of the environment.
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e Capture traces for sequential code sections. [__trace
e Execution is independent of the environment.

e Capture calls to parops. Il
e Specific parop call events are included in the trace.

Core O Core 1 Core 2 Core 3

call to parallel loop &

calls to sync

=




e Capture traces for sequential code sections. [__trace

e Execution is independent of the environment.
e Capture calls to parops. N

e Specific parop call events are included in the trace.
e Do not capture the execution of parops.

e Execution depends on the environment.
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Trace-driven simulator simulates sequential code sections.
The dynamic component executes parops at simulation time.
e Includes the implementation of parops.
Parops are exposed to the simulator through the parop interface.

The architecture state is exposed to the dynamic component through
the target architecture interface.
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e Parops are exposed to the simulator through the parop interface
e |tincludes operations for task management and synchronization.

e The architecture state and associated actions are exposed to
NANOS++ through the architecture-dependent module.

e NANOS++ can alter the simulator state and manage the simulated thread
according to the decisions based on the target architecture.
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float A[N]IN]IIM]IIM]; 7/ NxN blocked matrix,

7/ with MxM blocks e Cholesky factorization.
for (int jJ = 0; j<N; j++) {
for (int k = 0: k<j: K+ e Tasks are spawned on
for (int i = j+1; i<N; i++) pragma task annotations.

#pragma task input(a, b) 1nout(c)
sgenm_t(ALi1[K], ALiTIK], ALiTLi1; ® [NPUts and outputs are
specified for automatic

for (int i = 0; i<j; i++) dependence resolution.

#pragma task input(a) 1nout(b)
ssyrk_t(AJ1L1]l. AOIOD:

#pragma task i1nout(a)
spotrf_t(ALJ10L DD

for (aint 1 = J+1; I<N; i++)
#pragma task input(a) i1nout(b)
strsm_t(A101. ALVLD:
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e Sequential code sections correspond to tasks.
e One trace for the main task

e The thread starting the program execution at the main function
e One trace for each task

e Information for each function call
e E.g., for task creation it needs the task id and the input and output data

addresses and sizes
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1.

Simulation starts the main task.

Parop interface

Architecture dependent operations

NANOS++

Core 0O

initialization

Core 1

13




TaskSim
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TaskSim
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_ Parop interface
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_ Parop interface
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Parop interface

TaskSim _ _ NANOS++
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pending tasks.

TaskSim _
Architecture dependent operations
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ANOS++

_ Parop interface
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e Task generation (green) on the main task limits scalability (on the left)
e Parallelization of task generation (on the right) is crucial to avoid this bottleneck
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Appropriate for high-level programming models.
e OpenMP, OmpSs, Cilk,...
e Mixing scheduling/synchronization and application code is limited.
e Runtime system can be used as the dynamic component.

Not suitable for:

e Scheduling dependent on user code (user-guided scheduling).
e Computation based on random values (e.g., Monte Carlo algorithms).

Runtime system development:

e Scheduling policies.

e Overall efficiency optimizations.

e For future machines before the actual hardware is available.
Runtime software/hardware co-design.

e Hardware support for runtime system.
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We propose a novel trace-driven simulation methodology for
multithreaded applications.

The methodology is based on distinguishing:
e Application intrinsic behavior (user code).
e Parallelism-management operations (parops).

It allows to properly simulate different architecture configurations:
e With different numbers of cores.
e Using a single trace per application.

It provides a framework not only for architecture exploration but also for
runtime system development.
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