
Trace-driven Simulation of Multithreaded 
Applications

Alejandro Rico, Alejandro Duran,

 

Felipe Cabarcas
Yoav

 

Etsion, Alex Ramirez and Mateo Valero



2

Multithreaded applications and trace-driven simulation

●

 

Most computer architecture research employ execution-driven simulation tools.
●

 

Trace-driven simulation cannot capture the dynamic behavior of multithreaded 
applications.

acquire_lock
check
acquired

Core 0

acquire_lock
check

acquired

Core 1

release lock

wait!critical
section

Core 0 Core 1

acquire_lock
check

acquired

wait!

acquire_lock
check
acquired

release lock

critical
section

Scenario 1 Scenario 2



3

Trace-driven simulation has advantages

●

 

Avoid computational requirements of simulated applications.
●

 

Memory footprint.
●

 

Disk space for input sets.
●

 

Simulate applications with non-accessible sources, but accessible 
traces.
●

 

Confidential/restricted applications.
●

 

Lower modeling complexity.
●

 

Different host1

 

and target2

 

ISAs

 

/ endianness.

●

 

Problem: How to appropriately simulate multithreaded applications 
using traces?

1Host: system where the simulator executes.
2Target: system modeled in the simulator.



4

Targeting applications with decoupled execution

●

 

Distinguish the user code (sequential code sections) from parallelism-

 
management operations (parops).

Task-based parallel applications Loop-based parallel applications

create

 

task 1

sync

exec

 

task 1

parallel
loop

sync

Seq. code section parop

 

execution

completion task 1 sync sync
sync

Core 0 Core 1 Core 1Core 0 Core 2 Core 3

Idleparop

 

call Switch



5

How traces are collected (I)

parallel
loop

sync sync

sync

sync

Core 1Core 0 Core 2 Core 3



6

How traces are collected (II)

●

 

Capture traces for sequential code sections.
●

 

Execution is independent of the environment.
trace

20: sub r15, r12, r13
24: store r35, r15 (0x7e6a0)
28: sub r3, r31, r4
2c: load r21, r7 (0x80a88)
30: addi r3, r3
34: beq r3 (next_i: 7C)
7c: mul r32, r8, r9
80: mul r33, r10, r11
84: mul r34, r12, r13
88: store r32, r17 (0x7f280)
8c: store r33, r18 (0x7f284)

trace parallel
loop

sync
trace

trace

trace

trace

sync

sync

sync

trace

Core 1Core 0 Core 2 Core 3



7
trace parallel

loop

sync
trace

trace

trace

trace

sync

sync

sync

trace

Core 1Core 0 Core 2 Core 3

How traces are collected (III)

●

 

Capture traces for sequential code sections.
●

 

Execution is independent of the environment.
●

 

Capture calls

 

to parops.
●

 

Specific parop call events are included in the trace.

trace

call to parallel loop

calls to sync



8

How traces are collected (IV)

●

 

Capture traces for sequential code sections.
●

 

Execution is independent of the environment.
●

 

Capture calls

 

to parops.
●

 

Specific parop call events are included in the trace.
●

 

Do not

 

capture the execution of parops.
●

 

Execution depends on the environment.

trace

trace

trace

trace

trace

trace
trace

Core 1Core 0 Core 2 Core 3

call to parallel loop

calls to sync



9

target architecture
interface

parop interface

Simulation framework

●

 

Trace-driven simulator simulates sequential code sections.
●

 

The dynamic component executes parops

 

at simulation time.
●

 

Includes the implementation of parops.
●

 

Parops

 

are exposed to the simulator through the parop

 

interface. 
●

 

The architecture state is exposed to the dynamic component through 
the target architecture interface.

Trace-driven
simulator Interface Dynamic

component



10

Sample implementation: TaskSim – NANOS++

●

 

Parops are exposed to the simulator through the parop interface
●

 

It includes operations for task management and synchronization.
●

 

The architecture state and associated actions are exposed to 
NANOS++ through the architecture-dependent module.
●

 

NANOS++ can alter the simulator state and manage the simulated thread 
according to the decisions based on the target architecture.

TaskSim NANOS++

Target
architecture

interface

Parop
interface

create task
wait for tasks
wait on data

execute task
start/join

bind
yield

C

L2
L1

C CC

C

L1 L1 L1

L1 L1 L1 L1
C C C



11

OmpSs application example

●

 

Cholesky

 

factorization.
●

 

Tasks are spawned on 
pragma task annotations.

●

 

Inputs and outputs are 
specified for automatic 
dependence resolution.

float A[N][N][M][M]; // NxN blocked matrix,
// with MxM blocks

for (int j = 0; j<N; j++) {
for (int k = 0; k<j; k++)

for (int i = j+1; i<N; i++)
#pragma task input(a, b) inout(c)
sgemm_t(A[i][k], A[j][k], A[i][j]);

for (int i = 0; i<j; i++)
#pragma task input(a) inout(b)
ssyrk_t(A[j][i], A[j][j]);

#pragma task inout(a)
spotrf_t(A[j][j]);

for (int i = j+1; i<N; i++)
#pragma task input(a) inout(b)
strsm_t(A[j][j], A[i][j]);

}



12

Traces for OmpSs applications

●

 

Sequential code sections correspond to tasks.
●

 

One trace for the main task
●

 

The thread starting the program execution at the main function
●

 

One trace for each task
●

 

Information for each function call
●

 

E.g., for task creation it needs the task id and the input and output data 
addresses and sizes

Application
trace

m
ain

 ta
sk

parop

 

calls + info

…
tas

k 1
tas

k 2
tas

k 3

tas
k N



13

Simulation example (I)

1.

 

Simulation starts the main task.

Architecture dependent operations

Parop interface
TaskSim NANOS++

Core 0 Core 1

initialization



14

Simulation example (II)

2.

 

On a create task event, it calls the interface in the Parop interface.

Architecture dependent operations

Parop interface
TaskSim NANOS++

Core 0 Core 1

initialization

create task 1



15

Simulation example (III)

3.

 

That triggers the creation of the task in Nanos++.

Architecture dependent operations

Parop interface
TaskSim NANOS++

Core 0 Core 1

initialization

create task 1



16

Simulation example (IV)

4.

 

Returns control to TaskSim. Core 1 takes task 1

 

for simulation.

Architecture dependent operations

Parop interface
TaskSim NANOS++

Core 0 Core 1

initialization

create task 1



17

Simulation example (V)

5.

 

TaskSim

 

resumes simulation, and Core 1 starts simulating task 1.

Architecture dependent operations

Parop interface
TaskSim NANOS++

Core 0 Core 1

initialization

exec task 1
create task 1



18

Simulation example (VI)

6.

 

On create task 2

 

event, TaskSim

 

calls the runtime again.

Architecture dependent operations

Parop interface
TaskSim NANOS++

Core 0 Core 1

initialization

exec task 1
create task 1

create task 2



19

Simulation example (VII)

7.

 

NANOS++ creates task 2, and returns control to TaskSim.

Architecture dependent operations

Parop interface
TaskSim NANOS++

Core 0 Core 1

initialization

exec task 1
create task 1

create task 2



20

Simulation example (VIII)

8.

 

When Core 1 finishes the execution of task 1, starts task 2.

Architecture dependent operations

Parop

 

interface
TaskSim NANOS++

…

Core 0

…

Core 1

initialization

exec task 1
create task 1

exec task 2

create task 2



21

Simulation example (IX)

9.

 

TaskSim

 

reaches a synchronization parop. NANOS++ checks for 
pending tasks.

Architecture dependent operations

Parop interface
TaskSim NANOS++

…

Core 0

…
task wait

Core 1

initialization

exec task 1
create task 1

exec task 2

create task 2



22

Simulation example (X)

10.All tasks are finished, and TaskSim

 

continues the main task simulation.

Architecture dependent operations

Parop interface
TaskSim NANOS++

…

Core 0

…
task wait

Core 1

initialization

exec task 1
create task 1

exec task 2

create task 2



23

Task generation scheme scalability

●

 

Task generation (green) on the main task limits scalability (on the left)
●

 

Parallelization of task generation (on the right) is crucial to avoid this bottleneck

16p

32p

64p



24

Coverage and opportunities

●

 

Appropriate for high-level programming models.
●

 

OpenMP, OmpSs, Cilk,…
●

 

Mixing scheduling/synchronization and application code is limited.
●

 

Runtime system can be used as the dynamic component.
●

 

Not suitable for:
●

 

Scheduling dependent on user code (user-guided scheduling).
●

 

Computation based on random values (e.g., Monte Carlo algorithms).

●

 

Runtime system development:
●

 

Scheduling policies.
●

 

Overall efficiency optimizations.
●

 

For future machines before the actual hardware is available.
●

 

Runtime software/hardware co-design.
●

 

Hardware support for runtime system.



25

Conclusions

●

 

We propose a novel trace-driven simulation methodology for 
multithreaded applications.

●

 

The methodology is based on distinguishing:
●

 

Application intrinsic behavior (user code).
●

 

Parallelism-management operations (parops).

●

 

It allows to properly simulate different architecture configurations:
●

 

With different numbers of cores.
●

 

Using a single trace per application.

●

 

It provides a framework not only for architecture exploration but also for 
runtime system development.


