Trace-driven Simulation of Multithreaded
Applications

Alejandro Rico, Alejandro Duran, Felipe Cabarcas
Yoav Etsion, Alex Ramirez and Mateo Valero

i - Bamuhnar
UNIVERSITAT POLITECNICA B4
DE CATALUNYA ; Gmrra Y B

T |
¥
¥y

=

L
Fi
e
.-J ¥
L 8
L e
T =il

e Most computer architecture research employ execution-driven simulation tools.
e Trace-driven simulation cannot capture the dynamic behavior of multithreaded

applications.
Scenario 1
Core 0 Core 1
acquire_lock
check
acquired acquire_lock
: check
critical wait!
section
release lock
acquired

Scenario 2
Core O Core 1

acquire_lock

check

acquire_lock _
check acquired

wait!
critical

section
release lock

acquired

©@= _

Avoid computational requirements of simulated applications.
e Memory footprint.
e Disk space for input sets.

Simulate applications with non-accessible sources, but accessible
traces.

e Confidential/restricted applications.
Lower modeling complexity.
e Different host! and target? ISAs / endianness.

Problem: How to appropriately simulate multithreaded applications
using traces?

THost: system where the simulator executes.
2Target: system modeled in the simulator.

e Distinguish the user code (sequential code sections) from parallelism-

management operations (parops).

I Seq. code section [parop call [parop execution 77 Idle [l Switch
Task-based parallel applications Loop-based parallel applications
Core 0 Core 1 Core O Core1 Core2 Core 3

parallel
create task 1

~o
S~
-~

exec task 1

completion task 1 sync

Core O Core 1 Core 2 Core 3

parallel
loop

—
——
-—
— —
Il I,

sync sync

e Capture traces for sequential code sections.

e Execution is independent of the environment.

Core O

20:
24
28:
2C:
30:
34.
7c:
80:
84.

88

sub ri15,r12,r13

store r35, r15 (0x7e6a0)
subr3,r31,r4

load r21, r7 (0x80a88)
addir3,r3

beq r3 (next_i: 7C)

mul r32, r8, r9

mul r33, r10, r11

mul r34, r12,r13

. store r32, r17 (0x7f280)
8c:

store r33, r18 (0x7f284)

parallel
loop

- --[o%en

30El}

sync

\

5081} - - -

Core 1 Core 2 Core 3

30El}

sync

e Capture traces for sequential code sections. [__trace
e Execution is independent of the environment.

e Capture calls to parops. Il
e Specific parop call events are included in the trace.

Core O Core 1 Core 2 Core 3

call to parallel loop &

calls to sync

=

e Capture traces for sequential code sections. [__trace

e Execution is independent of the environment.
e Capture calls to parops. N

e Specific parop call events are included in the trace.
e Do not capture the execution of parops.

e Execution depends on the environment.

Core O Core 1 Core 2 Core 3

—
-
Q
®

call to parallel loop

30El}

calls to sync

-----ff _3%e4
---J] 3%ej

Trace-driven simulator simulates sequential code sections.
The dynamic component executes parops at simulation time.
e Includes the implementation of parops.
Parops are exposed to the simulator through the parop interface.

The architecture state is exposed to the dynamic component through
the target architecture interface.

Trace-driven
simulator

parop interface

Dynamic
. v
component
target architecture
interface

e Parops are exposed to the simulator through the parop interface
e |tincludes operations for task management and synchronization.

e The architecture state and associated actions are exposed to
NANOS++ through the architecture-dependent module.

e NANOS++ can alter the simulator state and manage the simulated thread
according to the decisions based on the target architecture.

create task Parop
wa!t for tasks interface
wait on data

TaskSim

execute task
start/join

- Target
arc_hlttecfture bind
interface yield

i @z

float A[N]IN]IIM]IIM]; 7/ NxN blocked matrix,

7/ with MxM blocks e Cholesky factorization.
for (int jJ = 0; j<N; j++) {
for (int k = 0: k<j: K+ e Tasks are spawned on
for (int i = j+1; i<N; i++) pragma task annotations.

#pragma task input(a, b) 1nout(c)
sgenm_t(ALi1[K], ALiTIK], ALiTLi1; ® [NPUts and outputs are
specified for automatic

for (int i = 0; i<j; i++) dependence resolution.

#pragma task input(a) 1nout(b)
ssyrk_t(AJ1L1]l. AOIOD:

#pragma task i1nout(a)
spotrf_t(ALJ10L DD

for (aint 1 = J+1; I<N; i++)
#pragma task input(a) i1nout(b)
strsm_t(A101. ALVLD:

11 ©@=

e Sequential code sections correspond to tasks.
e One trace for the main task

e The thread starting the program execution at the main function
e One trace for each task

e Information for each function call
e E.g., for task creation it needs the task id and the input and output data

addresses and sizes

\k.
4 Q{? N9 9% \l-%
> & F & &
& X0 & 4
AN
\\/
Application < —
trace
v
_ parop calls + info

1.

Simulation starts the main task.

Parop interface

Architecture dependent operations

NANOS++

Core 0O

initialization

Core 1

13

TaskSim

: Parop interface

Architecture dependent operations

NANOS++

create task 1

Core O Core 1

initialization

14

TaskSim

Parop interface -
_ ANOS++
Architecture dependent operations

Core O Core 1

initialization

create task 1

Aarcalans
15 -—— A

_ Parop interface
TaskSim ——n INANOS++
Architecture dependent operations ”
Core 0 Core 1
initialization

create task 1

Barceiana

NANOS++

Core 0O

initialization

create task 1

17

TaskSim

_
ANOS++

Architecture dependent operations

Core 0O

initialization

create task 1

create task 2

il

Core 1

Dexec task 1

Aarcalans

_ Parop interface
TaskSim 4l = _ .
H Architecture dependent operations

Core 0O

initialization

create task 1 -_:-
create task 2 ;:-

Core 1

exec task 1

ANOS++

19

Parop interface

TaskSim _ _ NANOS++
Architecture dependent operations
Core 0 Core 1
initialization

create task 1

create task 2

il
-

exec task 1

exec task 2

20 (@%

pending tasks.

TaskSim _
Architecture dependent operations
Core O Core 1
initialization

create task 1 -_:-
create task 2 -_:-

exec task 1

exec task 2

task wait *_.-

_
ANOS++

21

ANOS++

_ Parop interface
TaskSim A r
H Architecture dependent operations

Core 0 Core 1

initialization

create task 1

exec task 1

create task 2

exec task 2

task wait

SHasTer

pu A LI
Pu-
1im
11w

u ceu gl
u ceu AN
E 1
e ______.___| [
I EEEEEE— [y
| I e
I s s s —— .y _______________________|]
U3 .. ___|]
| N N eeewr___|
I e — L ——————— ——— e
8 ns 3.677.429.173 ns 8 ns 11.786.628.876 ns
cru PU
cru - cru 1
CPU - PU
CPU - cpu 3
CcPU = CcPU
CcPU - CcPU
CcPU = CcPU
CPU - CPU
CPU -
CPU - PU
Py -
CcPU -
CcPU -
CcPU -
cru -
CPU -
cpU -
CPU -
CPU -
CcPU -
cpu L}
CcPU el
CPU -
CPU -
cPU -
P -
CcPU -
cPu 2 Ll
CPU -
U 2 =
P —— I ———————
L -

@ ns 3,677,420,123 ns [] 11,789,628,878 ns

e Task generation (green) on the main task limits scalability (on the left)
e Parallelization of task generation (on the right) is crucial to avoid this bottleneck

23 (@W

Appropriate for high-level programming models.
e OpenMP, OmpSs, Cilk,...
e Mixing scheduling/synchronization and application code is limited.
e Runtime system can be used as the dynamic component.

Not suitable for:

e Scheduling dependent on user code (user-guided scheduling).
e Computation based on random values (e.g., Monte Carlo algorithms).

Runtime system development:

e Scheduling policies.

e Overall efficiency optimizations.

e For future machines before the actual hardware is available.
Runtime software/hardware co-design.

e Hardware support for runtime system.

24 (@:'"*m““

We propose a novel trace-driven simulation methodology for
multithreaded applications.

The methodology is based on distinguishing:
e Application intrinsic behavior (user code).
e Parallelism-management operations (parops).

It allows to properly simulate different architecture configurations:
e With different numbers of cores.
e Using a single trace per application.

It provides a framework not only for architecture exploration but also for
runtime system development.

25 @z

