
U i l R l G id dUniversal Rules Guided
Design Parameter Selection

for
Soft Error Resilient Processors

Lide Duan, Ying Zhang, Bin Li, and Lu Peng
Louisiana State University

1

S ft ESoft Errors

• Interference from environment may cause y
bit flips in a computer.

• Only the data is destroyed, but the circuit is
not damaged. Called Soft Errors (vs. Hard
Errors)

• Not all soft errors will result in visible errors
in the program output

E t t t t i– Empty processor structure entries
– Branch predictor

2

A hit t l V l bilit F tArchitectural Vulnerability Factor

• AVF: the probability that a raw soft error p y
finally produces a visible error in the output

• To calculate AVF (expensive):
– Statistical Fault Injection
– Architectural Correct Execution (ACE) Analysis

• Effective Soft Error Rate (SER)
= Raw SER * AVF

Depends on circuits, area, Quantified at architecture

3

temperature, etc. level, focused on in this work

Our WorkOu o
• Generate selective rules on design parameters to

identify the design space subregion showing optimal
soft error reliability (lowest AVF)soft error reliability (lowest AVF)
– Are these rules effective across programs?
– Can we do it efficiently?

800

1000

cfg1
cfg2

400

600

VF
 R

an
k

cfg2
cfg3
cfg4
cfg5

200

400A
V

4

0

FFT.1
FFT.2

FFT.4
Radix.2

WaterNS.2

WaterSpa.2

C t ib tiContributions
• Design parameter selection for soft error

resilient processors
– Use a rule search strategy to identify the design space

subregion showing lowest AVFg g

• Universal rules generation and validation
– Propose a mechanism to generate universal rules with

cross-program effectivenesscross program effectiveness
– Validate the generated rules on unseen programs

• Balancing reliability, performance and
f ltipower for multiprocessors

– Perform a multi-objective optimization
– Quantify proper tradeoffs for these metrics

5

y p p

Patient Rule Induction MethodPatient Rule Induction Method
• PRIM: generate selective rules on input variables,

quantifying the subregion with lowest output valuesquantifying the subregion with lowest output values.
I.e. “Valley Seeking”

T i i

Peeling Pasting

K ti til t tTraining
data

Start from the entire

Keep pasting until output
mean starts increasing

input space

Peel a small portion of
Peeling
result

Paste a small
portion of

input space
input space,

minimizing output
mean for the rest

Generate
new box

6Keep peeling until support < β

Selective
rules

E i t U iExperiments on Uniprocessors
• Simulator: SimpleScalar3.0 + ACE analysis

– Measure AVF for ROB, LSQ, Functional Units,
and Register File

• Benchmarks: SPEC2000+SPEC2006• Benchmarks: SPEC2000+SPEC2006
– Use SimPoint to derive a representative 100-

million instruction phasep

7

U i D i SUniprocessor Design Space
• Space size: 473,088

R d l l 2 000 i t f i l ti• Randomly sample 2,000 points for simulation

8

Program-Specific Design Parameter SelectionProgram-Specific Design Parameter Selection

Minimizing AVF for different structures have
different impacts on performancedifferent impacts on performance

9

Program-Specific Design Parameter SelectionProgram-Specific Design Parameter Selection

Tends to degrade performance

10

Program-Specific Design Parameter SelectionProgram-Specific Design Parameter Selection

Tends to improve performance

11

Program-Specific Design Parameter SelectionProgram-Specific Design Parameter Selection
Can either improve or degrade performanceReducing the AVF of one structure may increase the

AVF of others Need to improve holistic reliabilityAVF of others. Need to improve holistic reliability.

12

U i l R l G tiUniversal Rules Generation
• Rank the 2,000 simulated configurations in

h b h k (i t f AVF)each benchmark (in terms of AVF)
– Rank 1 has the lowest AVF

T i i l i l d l ith th• Train a single universal model, with the
output variable being:

The average of ranks– The average of ranks
– The maximum of ranks
– Mean(rank3)ea (a)

13

U i l R l V lid tiUniversal Rules Validation

• Simulate the 2,000 configurations for each , g
of the test benchmarks

• Identify what points (among the simulated
2K ones) are selected by Rule Set I
– βwas 2%, so ~40 points are selected.

• Identify where the selected points are
located in the entire design space (not just
th l d 2K i t !)the sampled 2K points!)

Use bootstrapping method

14

Use bootstrapping method

V lid ti f R l S t IValidation of Rule Set I

15

E i t M ltiExperiments on Multiprocessors

• Simulator: M5 + AVF measurement on
multiprocessors

• Multithreaded workloads: 6 benchmarks
from SPLASH2

• Each workload has three runs
– 1-threaded, 2-threaded, and 4-threaded runs on

single-core, dual-core, and quad-core
processors respectivelyprocessors, respectively

– Each run contains 1K simulations sampled from
multiprocessor design space

16

M lti D i SMultiprocessor Design Space
• More parameters

E l d i 1 5 illi i t• Enlarged size: ~1.5 million points

17

O ti i i Th M t iOptimizing Three Metrics

• Performance: 1/Throughput = (ΣIPCi) -1g p (i)
• Reliability: AVF of the system
• Power: power consumption of the systemPower: power consumption of the system

Individual optimization of the three metricsIndividual optimization of the three metrics

18

V lid ti E lValidation Example
2-threaded runs of 5 benchmarks used in training

19

B l i th Th M t iBalancing the Three Metrics
• Simultaneously balancing reliability, performance,

and power is a multi-objective optimization problem
• Requires a reasonable objective function to

achieve good tradeoffs among conflicting metricsachieve good tradeoffs among conflicting metrics

 Adjust weight factors to prioritize different metrics

 Rule Set II, III, IV (individual optimizations) are
special cases of f

20

 None of these rule sets achieves a good tradeoff

T d ffTradeoffs
(1,0,0): optimize AVF(0,1,0): optimize performance(0,0,1): optimize power

(0.3,0.4,0.3): Tradeoff 1(0.2,0.6,0.2): Tradeoff 2It’s up to the designer to assign the
weight factorsg

21

SSummary
• Propose to use PRIM to generate simple rules

on design parameters
– Identify the optimal design choices

Provide useful guidelines at pre silicon stage– Provide useful guidelines at pre-silicon stage
• Generate universal rules effective across

programsp og a s
– Only a single model trained
– Validated on unseen programs

• Balance conflicting metrics on multiprocessors
– Propose an effective objective function

Achieve good tradeoffs via assigning weight factors

22

– Achieve good tradeoffs via assigning weight factors

Thanks!

Q estions?Questions?

23

T diti l D i S St diTraditional Design Space Studies
• Program-specific: need to train a separate

model for each program.
P1P1P1 P2 Pn

E i !
M1 M2 Mn

……

• Expensive!
• Exacerbated in multithreading

of multiprogrammed workloads significantly– # of multiprogrammed workloads significantly
increases

– 100 (single programs) 4,950 (2-program
bi ti) 4 illi (4

24

combinations) ~4 million (4-program
combinations) …

PRIM E lPRIM Example

{y x }{yi, xi}

Try to peel a small portion, calculate the output
mean of the rest.

25

PRIM E lPRIM Example

Peel off the portion that generates the lowest
output mean for the rest

26

PRIM E lPRIM Example

Repeat the above iteration,

27

and keep peeling

PRIM E lPRIM Example

Repeat the above iteration,

28

and keep peeling

PRIM E lPRIM Example

The identified subregion, i.e.
the “valley” of the input space

Peeling stops when the support

29

is below a threshold β

PRIM E lPRIM Example

The identified subregion, i.e.
the “valley” of the input space

Pasting is the reverse of peeling

30

B t t iBootstrapping
• In order to estimate the p-percentile of the

entire design space:
– Sample (with replacement) 1,000 times for the

2K points2K points
– Calculate the p-percentile for the 1K bootstrap

samples
C l l h il (W) f h b– Calculate the 5-percentile (say W) for the above
1K values. Then we have 95% confidence that
the p-percentile of entire design space >= W.

• Adjust p to make W >= the selected point’s
value. Then, the selected point is within the
top p% optima of the entire design space

31

top p% optima of the entire design space.

