Integrated Modeling Challenges in Extreme-Scale Computing

Pradip Bose
IBM T. J. Watson Research Center
pbose@us.ibm.com

ISPASS-2011 Keynote; April 12, 2011
Outline of Talk

Introduction
- Setting the context: a view of future extreme-scale computing
- What is the primary “wall”: power or reliability?
- Why is pre-silicon modeling a grand challenge in itself?

Integrated Modeling
- Power/Temperature, Performance, Reliability
- Levels of Abstraction in Integrated Modeling
 - Relative versus absolute accuracy issues
 - Multi-core power and reliability-aware definition; dynamic management
 - Selected examples to illustrate the modeling complexities

Concluding Remarks
What is Extreme Scale Computing?

Petascale and Exascale Systems

- Exa- refers to 10^{18}, which is 1000x Peta-
 - Exascale refers to a system that can handle a million trillion operations per second
- Various government agencies have identified exascale as a critical need in the 2018-2020 timeframe
- In *scientific* communities, the important operation is one floating point operation or calculation
 - Exascale in this context refers to 10^{18} flops
 - IBM Roadrunner system: peak of 1 petaflops in 2008
 - Top-ranked system in “Top500” list back in 2008/2009
 - IBM’s Blue Gene product family: L, P, Q systems have consistently been dominant players in the “Top500” and “Green500” lists.
 - So Exascale demands a ~1000x improvement in throughput in 10 years

Many Examples of BIG Applications that Need Extreme Scale Computing

- Whole Organ Simulation
- Smart Buildings
- Nuclear Energy
- Low Emission Engine Design
- Li/Air Batteries
- CO2 Sequestration
- Tumor Modeling

Pratt & Whitney on Intrepid
INCITE PI: Peter Bradley, Pratt & Whitney
- INCITE 2006-2007 technologies now being applied to next generation low emission engines.
- Important simulations can now be done 3X faster
- A key enabler for the depth of understanding and meeting emissions goals

P. Bose, ISPASS-2011 Keynote
The Power Wall → Transition to New Technology

Bipolar to CMOS Transition

- **Power**: 15X ↓
- **Density**: 50X ↑
- **Transistor Speed**: 3-4X ↓

Traditional CMOS to 3D CMOS

- **Power**: 10X ↓
- **Density**: 3-10X ↑
- **Transistor Speed**: 3X ↓

Opportunity for 3D Si
Power-Performance Wall →
Multi-Cores for the Processor Chip

The Cell Processor Chip

Heterogeneous multi-core chips

Homogeneous

POWER4: 2001
180 nm, Cu, SOI
2 cores / chip

POWER 4+:
130 nm

POWER5: 2004
130 nm, Cu, SOI
2 cores / chip
2 way SMT / core

POWER5+: 90nm

POWER7: 2010
45nm, Cu, SOI
8 cores/chip
4-way SMT/core

P. Bose, ISPASS-2011 Keynote
The Power Wall: A View of the Supercomputer Arena

Oxide thickness is near the limit in late CMOS design era

- Density improvements will continue but... power efficiency from technology will only improve very slowly.
- Historic trend of power efficiency improvement will slow

Nov 2009 Green 500 List:
If the world’s most power efficient supercomputer is extrapolated to a sustained Exaflop (by 2018), power would be ...
~2 GigaWatts

BG/P Compute Chip, 2007

- 4 PPC-440 cores, 850 MHz
- IBM 90nm CMOS ASIC
- 173 sq. mm.
- 208 million transistors
- 16 W

IBM has been a leader in large systems energy efficiency, but meeting the exascale goals is nothing short of a very grand challenge!

System-on-a-Chip (SoC)
General purpose commercial servers have been on a 2X performance every 2 years curve.

But special-purpose HPC supercomputers have been on a ~4X performance every 2 years curve.

Power-efficient accelerator sub-cores for special-purpose functions constitute the vision of workload-optimized hybrid systems of the future – esp. in emerging new application domains – Games market and the Cell multi-core heterogeneous chip was an early trend setter.

Nambiar et al., TPCTC 2010, LNCS 6417, 2011
P. Bose, ISPASS-2011 Keynote
A key principle in use in large-scale parallel HPC systems

Cost constraint for an exascale-regime system implies:

• manageable number of compute nodes \rightarrow dozens of cores/chip

Also, cannot forget the serial (Amdahl) component of HPC codes!
Multi-dimensional tradeoff analysis and design space exploration across targeted workloads requires the support of careful, application-driven, dynamic management capability.

- *Power Shifting* across compute, communication and storage resources.
- Wear-leveling (proactive redundancy) to increase lifetime (MTBF): J. Shin et al. ISCA-2008.

Dynamic power-gating or DVFS features needed to implement power shifting or wear-leveling mechanism.
Application-Driven Dynamic Resource Management

- Multi-dimensional tradeoff analysis and design space exploration across targeted workloads requires the support of careful, application-driven, dynamic management capability
 - *Power Shifting* across compute, communication and storage resources
 - Wear-leveling (proactive redundancy) to increase lifetime (MTBF): J. Shin et al. ISCA08

Dynamic power-gating or DVFS features needed to implement power shifting or wear-leveling mechanism
Application-Driven Dynamic Resource Management

- Multi-dimensional tradeoff analysis and design space exploration across targeted workloads requires the support of careful, application-driven, dynamic management capability
 - *Power Shifting* across compute, communication and storage resources
 - Wear-leveling (proactive redundancy) to increase lifetime (MTBF): J. Shin et al. ISCA08

Dynamic power-gating or DVFS features needed to implement power shifting or wear-leveling mechanism
Reliability and Availability: The Other “Wall”

Massive numbers, advanced technologies, and quantity of data produce reliability issues in both hardware and software.

http://www.er.doe.gov/ASCR/ASCAC/Meetings/Aug06/Stevens.pdf

Key point: processors targeted for smaller-size systems are usually not suitable for building large-scale supercomputing systems

Hardware Failures
- One million compute nodes, each with a 10 year MTBF would constitute a system that that is likely to fail every 5 minutes

Software Failures
- Brute force techniques (checkpointing) may not be feasible due to disk bandwidth
- Time to checkpoint may dominate computation
- Need to look at reliability at the application level

e.g. SWAT project at UIUC (Sarita Adve’s group)

ANL = Argonne National Lab
In fact...reliability is (quite possibly) the primary wall!

If R_N increases with N

$$R_N = \frac{MTTR}{MTTF} \text{ (recovery overhead)}$$

for a N-way system

A reliability-unaware extreme scale design may not even be able to complete a benchmark workload (e.g. Linpack), even with an unconstrained power budget because of too frequent errors and consequent rollbacks!

(See Meeta Gupta et al., MICRO-2009 for local vs. global recovery sensitivities at chip level)
Chip Level Reliability

- Chip-level functional robustness likely to decline in future
 - Increase in transient errors and hard faults
 - Maintaining historic levels of chip-level MTBF: cost-prohibitive
 - Burn-in difficulty, cost due to high power regime
 - Thermal hot spots are a new source of transient/hard failures

- System-level reliability targets: going to be hard to meet
 - Two “system” examples:
 - SoC with hundreds of core / non-core elements
 - Large HPC system with thousands or millions of processor cores/chips [extreme scale computing]

- Need new cost-effective solutions across the entire h/w-s/w system design stack to meet FIT targets at any given level of “system” abstraction
 - Design and analysis tools must evolve as well

Cost implication trend: not sustainable!
Chip/System Level Definition (Modeling) Approaches

A few specific examples
Towards an *integrated* modeling infrastructure

Power Modeling Enhancements

- Latch-counts + array power models
- Latch-counts + scaled CPAM based models + refined array power models
- Trace/exec driven simulation

Package RLC models, Ldi/dt analysis

Temperature Modeling

Reliability Modeling

VALIDATION

Substrate Processor Simulator

- System interconnect and tech. scaling parameters, models
- Uniprocessor CPI and Power sensitivities
- Multi-Core Power-Performance Modeling

microarch design and definition

- Toolset evolved: 2000-2008
- Not as integrated as one would like!
- Detailed and slow!
The Pre-Silicon Modeling Challenge in Extreme Scale Systems

- Why is this a grand challenge in itself?
 - Because the constraints are multi-dimensional, interdependent and extremely hard to meet at affordable cost. Example:
 - 20 MW system power
 - 1 exaflops sustained performance
 - MTBF of at least two weeks, preferably 1 month

- And, because cycle-accurate simulation speed is not scaling up
 - Host hardware (simulation platform) speed is not increasing
 - Number of cores and target MIPS is increasing exponentially
 - Cycle-accurate performance simulators are very hard to parallelize
Early Chip Planner Framework at IBM Watson

A step toward better integration of component models
Phased Power Modeling Methodology

- Concept → HLD → Implementation Phase

- Previous Generation Database
- Scaled Architecture Power Models
- MPwr
- SCHSim (circuit power)
- RTLSim (data switch factors)
- Unit Level Clock Gating Efficiency Estimate

- Benchmarks (e.g. SPEC)

- MSim performance model

- Gator Table
 - Gator (calc CGFs)
 - Event & Instr Freq

- Designer
 - Clocking Conditions (event expressions)

- Current Database
 - Performance Validation

- VHDL Contract

- Power Projection for Given Workload

2000+ pstats

H. Jacobson et al., HPCA-17, 2011
Power Model Requirements in the Many-Core System Era

- **Core-level abstraction is a must (for speed)**
 - Facilitates multi-core DPM algorithm studies
 - Also, fast power-perf tradeoff analyses for core
- **But… detailed reference model useful for macro-wise power budgeting and tracking**
 - Core power projection accuracy is important
- **Linear regression based abstraction is a very useful technique**
 - H. Jacobson et al., HPCA-17, 2011
 - See also: previous work: Powell et al. (HPCA 2010), Lee and Brooks (ASPLOS 2006)
- **POWER7 chip-specific model**
 - Detailed p7 reference power model
 - Formal attribute selection method
 - Support for microarchitecture scalability
Reference Power Model

- **p7 microprocessor chip**
 - High frequency aggressive superscalar out-of-order design
 - 32-thread, 8 core, 32kB I/D caches, 256kB L2 cache

- **p7 core reference power model**
 - Suitable for macro-level power analysis, tracking
 - 2300 µarch stats
 - 500 RTL macros
 - 2800 modeled clock/port/data gating domains

POWER7 (p7) Core + L2

H. Jacobson et al., HPCA-17, 2011
Power Model Abstraction

- Abstract model obtained through linear regression
 - 15,000+ sets of event stats obtained from simulation of Spec2k6, Commercial, Multimedia, and other workloads
 - Power calculated using reference model for each set of event stats
 - Linear regression performed to create abstract power model
 - \(\text{power} = C_0 + C_1*S_1 + \ldots + C_n*S_n \)
 - 10/90 coverage test used to validate the final power model

H. Jacobson et al., HPCA-17, 2011
A few attributes explain most of power variance
- First 8 principal component attributes explain 99% of variance
- Not necessarily the best for intuitive understanding by humans or ease of implementation

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Explained % of Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>25</td>
</tr>
<tr>
<td>2000</td>
<td>90</td>
</tr>
<tr>
<td>2500</td>
<td>100</td>
</tr>
</tbody>
</table>

Explained % of Variance

H. Jacobson et al., HPCA-17, 2011
The Importance of Selecting the Right Attributes

- Single attribute (1)
 - IPC fitness corr. 0.905
 - Significant error spread

- Random attributes (8)
 - Best fit corr. 0.976
 - Worst fit corr. 0.109

- Domain experts (8)
 - Expert A fit corr. 0.968
 - Expert B fit corr. 0.971

Conclusion
- Need systematic approach to select high quality attributes
- See HPCA-17 paper for details
Processor Core Power Proxy: A Hardware Feature in p7

IEEE Micro, 2011 (to appear)
IBM J. R&D, vol. 55, no. 3, 2011

Goal:
Estimate per-core chiplet power that we cannot directly measure

Method:
- For each functional unit, pick small subset of activities to infer power consumption (*e.g. cache & regfile reads & writes, execution pipeline issue)*
- Weight each activity to represent how much relative power it consumes
- Combine weighted Core, L2, and L3 activity, then add constant offset plus clock grid power to form:

\[
\text{Chiplet Active Power} = \sum (W_i \times A_i) + C + Kf
\]

Result:
- EnergyScale Firmware adjusts this value for effects of leakage, temperature, and voltage

Hardware design was driven by power model abstraction research at IBM Watson (A. Buyuktosunoglu et al.)

Statements regarding EnergyScale features do not imply that IBM will introduce a system with this capability
Power Proxy Measurements

- EnergyScale firmware budgets power across multiple processors and memory, used to:
 - Shift power to cores or other components (e.g. memory) that need it the most
 (Especially important to achieve higher overall performance under a power cap)
 - Enable Server Partition power accounting

Statements regarding EnergyScale features do not imply that IBM will introduce a system with this capability.
Pitfalls of Architectural Abstractions: An Example from Soft Error Rate (SER) Analysis

System SER = \sum [AVF(i) \times Raw_SER(i)] \quad \text{AVF} + \text{SOFR abstraction}

Errors in AVF+SOFR-based estimation get very large, when number of modeled cores, C in the system becomes very large, or if the raw error rate of each of the N cores becomes very large.

Power Model Calibration/Validation Methodology

- **HotGen**
 - Parameter file
 - e.g. FXU utilization target: 30%

- **Microbenchmark**
 - Measurement

- **SIMP**: Actual chip with IR camera
 - H. Hamann et al. JSSC, Jan 07

- **Integrated Model (Power, Temp, Perf)**
 - Simulation
 - Compare

- **Calibrate**
 - Test case generation

Zhigang Hu et al. 2005-06
POWER5 Hotspot Patterns

- 50 different workloads for POWER5 imaged & analyzed
 - HotGen microbenchmark generator tool
- observed significant differences in circuit utilization

(H. Hamann et al., ISSCC-2006)
Optimal Pipeline Depth: TPCC Workload

Power-performance optimal

Performance optimal

Total FO4 Per Stage

bips

bips^3/W

Relative to Optimal FO4

0 0.2 0.4 0.6 0.8 1

V. Srinivasan et al., MICRO-2002
V. Zyuban et al., IEEETC, 8/2004

Note: Optimal point on x-axis is the important output of
such an analysis model; y-axis value absolute accuracy not very important!
CMP Space Exploration Results

The optimal core-count for a given core type

Analytical or hybrid models do quite well in such scenarios

Yingmin Li, Zhigang Hu et al., HPCA 2006
Chip-level Lifetime Reliability Analysis

◊ Floorplan

◊ Power

◊ Temperature

◊ FIT due to EM

◊ FIT due to NBTI

◊ FIT due to TDDB

Jeonghee Shin et al., DSN-2007, ISCA-2008

P. Bose, ISPASS-2011 Keynote
Power-Performance Tradeoffs (on-chip, global power management; DVFS): A Key Modeling Challenge!

- MaxBIPS within 1% of Oracle
- Verification complexity of multi-core power management algorithms – scalability – is a key issue [A. Lungu et al. MEMOCODE 2009]
Activity migration \textit{[temperature-aware task scheduling]} reduces maximum on-chip temperatures.

(a) DAXPY running on core 0

(b) DAXPY running on core 1

(c) DAXPY hopping every 7ms

Chip designs could leverage the lower temperatures for higher frequencies, lower-cost packaging or enhanced reliability.
Leveraging Spatial Heat Slack

Activity Migration reduces Hotspots

Summary: Core-hopping (4ms) reduces maximum on-chip temperature

Measurement-based analysis; very hard to project accurately via simulation

Maximum delta temperature

Workloads

<table>
<thead>
<tr>
<th>Workloads</th>
<th>Reduction in Temperatures (Celsius)</th>
</tr>
</thead>
<tbody>
<tr>
<td>daxpy</td>
<td>5.5</td>
</tr>
<tr>
<td>apsi</td>
<td>4.2</td>
</tr>
<tr>
<td>fma3d</td>
<td>3.3</td>
</tr>
<tr>
<td>lucas</td>
<td>4.9</td>
</tr>
<tr>
<td>swim</td>
<td>5.1</td>
</tr>
<tr>
<td>bzip2</td>
<td>2.2</td>
</tr>
<tr>
<td>twolf</td>
<td>2.3</td>
</tr>
<tr>
<td>vortex</td>
<td>2.0</td>
</tr>
<tr>
<td>vpr</td>
<td>3.5</td>
</tr>
</tbody>
</table>

% slow down

<table>
<thead>
<tr>
<th>Workloads</th>
<th>% slow down</th>
</tr>
</thead>
<tbody>
<tr>
<td>daxpy</td>
<td>0.1</td>
</tr>
<tr>
<td>apsi</td>
<td>-1.1</td>
</tr>
<tr>
<td>fma3d</td>
<td>-0.5</td>
</tr>
<tr>
<td>lucas</td>
<td>0.4</td>
</tr>
<tr>
<td>swim</td>
<td>1.0</td>
</tr>
<tr>
<td>bzip2</td>
<td>1.1</td>
</tr>
<tr>
<td>twolf</td>
<td>1.6</td>
</tr>
<tr>
<td>vortex</td>
<td>0.9</td>
</tr>
<tr>
<td>vpr</td>
<td>2.5</td>
</tr>
</tbody>
</table>

J. Choi, C-Y, Cher et al., ISLPED07
Power Gating as a Dynamic Management Knob

- Power Gating (PG) is becoming an essential actuation knob for dynamic power management
 - Header or footer transistor gates off power to the “macro” during idle durations
 - Applied at core-level (per-core PG) or within a core at the unit-level
 - PG is applicable to a broad range of compute nodes that exhibit variable idle times
 - Mobile, Desktop, Enterprise etc.

- Our end target is efficiency at all levels: from chips, all the way through to the data center level
Methodology for Core-Level Power Gating Analysis

- Use bit-vector traces (utilization) from instrumented cycle-accurate perf. simulator
- Workloads: SPEC, other traces
- Implement trace driven simulator for power gating algorithms, obtain:
 - Leakage power savings estimate
 - Projected performance impact
 - Assume constant performance impact of 3 cycles on wake-up

A. Lungu et al., ISLPED-2009
Power Savings Potential for Power Gating of Functional Units

Power gate potential function of break-even point for **FXU0 and FXU1** units

- **FXU0, FP benchmarks**
- **FXU0, INT Benchmarks**
- **FXU1, FP Benchmarks**
- **FXU1, INT Benchmarks**

% Leakage Savings

- **Power Savings Potential for Power Gating of Functional Units**

Power gate potential function of break-even point for **LSU0 and LSU1** units

- **LSU0, FP benchmarks**
- **LSU0, INT Benchmarks**
- **LSU1, FP Benchmarks**
- **LSU1, INT Benchmarks**

% Leakage Savings

- **39.77**
- **46.85**
- **60.66**
- **65.26**

Lungu et al., ISLPED-2009

Large Potential for Power Gating!
Pitfalls of Current Power Gating Algorithms

- Idle interval prediction can be consistently wrong:
 - => power gating algorithm consistently wastes power instead of saving

- Possible scenarios in loops
 - Idle monitor failure
 - Idle detect 3, break-even 20
 - Average leakage power loss 100%
 - Utilization monitor failure
 - Utilization threshold 30%
 - Average leakage power loss 98.5%

A. Lungu et al., ISLPED-2009
Single Level Idle Detect Power Gating Algorithm

Power savings of idle counter solution function of idle_detect for FXU0 unit (FP benchmark)

Projected performance impact of idle counter solution (FP benchmark)

A. Lungu et al., ISLPED-2009
Two Level (Guarded) Power Gating Algorithms

- **Observations:**
 - Efficiency requirement of power saving schemes: **save power**
 - Single level idle prediction algorithms can behave incorrectly and **waste power**

- **Target:**
 - Improve quality of power gating schemes by reducing or eliminating their risk of wasting power

- **Idea:**
 - Add second level monitor to control enabling of power gating scheme
 - Improve efficiency of power wasting cases without degrading power saving of the common case

A. Lungu et al., ISLPED-2009
Power Gating in a Datacenter Setting

N. Madan et al., HPCA-17, 2011
Problems with Core-Level Power Gating

Cannot be aggressive with PG as penalties can be huge
Cannot be overly conservative as power saving potential is lost
Augmenting Core-Level Power Gating with Guarding

Resource Utilization, Idle & Burst Distribution

Power Gating Module

Guarded Gating Module

Perf Loss% #Wake-ups

#Cores ON/OFF Unit-level PG

(Dis/En)able Gating

Incoming Tasks

PWR ON/OFF

Core1

Core2

CoreN

NETWORK

End Users

N. Madan et al., HPCA-17, 2011

Bose, ISPASS-2011 Keynote
Proposed Guard Mechanism

- Monitor system response time
 - Response time can be very high when the system is overly utilized
- Monitor number of core wake-ups
 - Wake-up latency and switching power can be negligible too
- Only If **both** monitors show unacceptable behavior
 - Disable power manager
- Re-enable power manager after a programmable time period
- Alert the system manager

See N. Madan et al., HPCA-17, 2011 for Evaluation Results

More coverage at: Energy-Secure Architectures: Tutorial at ISCA-2011
Queuing Model Based Evaluation Framework

Statistical Model: Task Length, Inter-Arrival Time

USC Datacenter Trace: Task Length, Inter-Arrival Time

Power Gating Module (IdlePG, UtilPG)

Incoming Tasks

PWR ON/OFF

#Cores ON/OFF

Core1

Core2

CoreN

Tasks with Expired Time Slice

See N. Madan et al., HPCA-17, 2011 for evaluation results
Concluding Remarks

- **Power and Reliability Walls are Key Impediments to Realization of Extreme Scale Computing Targets of the Future**
 - Reliability may well be the more fundamental obstacle beyond a certain size of the system

- **Integrated Models (power/temperature, performance, reliability) are a Grand Challenge**
 - Analytical abstraction methods are essential for speed
 - Yet, accuracy requirements at core/chip and other component level are more stringent than ever because of the implications of the huge scale (system size)
Thank you!