
Advancing Computer Systems
without Technology Progress

Christos Kozyrakis

Stanford University
http://csl.stanford.edu/~christos

ISPASS Keynote – April 23rd 2013

2

Computing is the Innovation Catalyst

Science Government Commerce

Healthcare Education Entertainment

Faster, greener, cheaper

3

The Key Enabler

  Turning exponentially increasing transistor counts into
  Exponentially improving performance
  At constant cost and power consumption

4

CMOS Scaling: The Past

  Moore’s law (more transistors) + Dennard scaling (lower Vdd)
  2.8x in chip capability per CMOS generation at constant power

Chip Capability

C
hi

p
Po

w
er

1.0 1.5 2.0

2.5

3.0 2.5

1.5

2.0

3.0

2x transistors

1.4x frequency

0.7x voltage

0.7x capacitance

2.8x capability, same power

[S. Keckler, 2011]

5

CMOS Scaling: The Present

  Moore’s Law without Dennard scaling
  1.4x in chip capability per generation at constant power
  32x capability gap compared to past scaling

Chip Capability

C
hi

p
Po

w
er

1.0 1.5 2.0

2.5

3.0 2.5

1.5

2.0

3.0

2x transistors
0.7x capacitance

32x gap per decade

[S. Keckler, 2011]

6

Datacenter Scaling

  Cost reduction
  Switch to commodity servers
  Improved power delivery & cooling

  Capability scaling
  More datacenters
  More servers per datacenter
  Multicore servers
  Scalable network fabrics

one time trick

PUE < 1.15

@60MW per DC

End of voltage scaling

>$300M per DC

7

Beyond CMOS?

  Post CMOS technologies are not ready yet
  Need to advance systems without technology progress

  Need ~3 decades of scaling to cover fallow period

80s 90s 00s 10s 20s 30s 40s

Fallow Period

Our Challenge

C
hi

p
C

ap
ab

ili
ty

 (
lo

g)

8

Advancing Systems without
Technology Progress

  Locality-aware parallelism

  Specialization

  Reduce overprovisioning

  Increase utilization

  Approximate computing

9

Advancing Systems without
Technology Progress

  Locality-aware parallelism

  Specialization

  Reduce overprovisioning

  Increase utilization

  Approximate computing

10

Parallelism wo/ Locality Poor Scaling

  Memory costs more than compute
  16b INT mult: 0.5ns 2pJ

  64b FP op: 1ns 50pJ

  Shared cache: 10ns 1,000nJ

  DRAM: 100ns 10,000nJ

  It will only get worse
  Poor scaling of long wires

  Data-intensive applications

Shared Cache

Core
1

Coherence Directory

DRAM

Priv
Cache

Core
2

Priv
Cache

Core
3

Priv
Cache

Core
4

Priv
Cache

Core
1024

Priv
Cache …

Shared Cache

Core Core Core Core

Coherence Directory

DRAM

Private
Cache

Private
Cache

Private
Cache

Private
Cache

11

Locality-aware Parallelism

  Scheduling for locality
  Move work to data

  Locality Vs balance Vs overheads
  Conflicting constraints at large scale

Shared Cache

Core
1

Coherence Directory

DRAM

Priv
Cache

Core
2

Priv
Cache

Core
3

Priv
Cache

Core
4

Priv
Cache

Core
1024

Priv
Cache …

12

Example: Pipeline Parallelism

  Streaming workloads
  App as a graph of stages communicating through queues

  Each stage can be sequential or data-parallel

  Arbitrary graphs allowed (multiple inputs/outputs, loops)

  Well suited to many parallel apps & compilers

Camera&Camera&Camera&Tiler& Sampler& Camera&Camera&Intersect&
Camera&Camera&Shade& Camera&Camera&

Shadow&
Intersect&

Frame&
Buffer&

Ray$tracing$pipeline$

13

Scheduling Tradeoffs

Max parallelism

Load balancing

Locality-aware

Bounded footprint

Low overheads

GPGPU
(CUDA, OpenCL)

  $

$

$

Task-stealing
(Cilk, X10)

$

$

Static
(StreamIt, Delite)

$

$

Camera Camera Kernel 1

Camera Camera Kernel 2

Dequeue

T0& T1& Tn&
Enqueue

Steal

14

Locality-Aware Dynamic Scheduling

  Insight: use info available in application graph
  Max parallelism: allow any core to work on any stage

  Max locality: process intermediate data asap

  Bounded footprint: account for use queues

  Load balance: steal task without impacting locality

Camera Camera

Camera Camera

3

2
1 4

15

Locality-Aware Dynamic Scheduling

  GRAMPS scheduler [PACT’11]

  Breadth-first stage ordering: higher priority to consumers

  Dequeue from high-priority first: good locality, small footprint

  Steal low-priority first: good locality, less stealing

  Backpressure to control footprint: full queue block producers

Camera Camera

Camera Camera

3

2
1 4 2$

2$
2$
2$

3$
3$

4$1$

Dequeue order

Steal order

16

Locality-Aware Dynamic Scheduling

  On a 12-core, 24-thread x86 system

  Perf gains: 17x over GPGPU, 2-5x over task-stealing & static

  Energy gains: 22x over GPGPU, 5x over task-stealing & static

  Differences become larger as we scale up

0$

5$

10$

15$

20$

25$

Execu=on&Time& Memory&Footprint&

GRAMPS& GPGPU& TaskFstealing& Sta=c&

17

Locality-aware Parallelism:
Challenges Ahead

  Locality-aware scheduling for unstructured codes
  E.g., collision detection, hash-join, …

  Applications with low temporal locality
  E.g., probabilistic inference, graph algorithms, …

  Scheduling overheads at large-scale
  E.g., >1K cores with fine-grain parallelism
  HW scheduling: efficiency Vs flexibility

18

Advancing Systems without
Technology Progress

  Locality-aware parallelism

  Specialization

  Reduce overprovisioning

  Increase utilization

  Approximate computing

19

Specialization
  Specialized cores are more efficient than general processor

  In terms of energy and performance

  Already the norm in mobile chips
  Now appearing on server chips as well

  Specialization flavors
  Heterogeneous cores (e.g., big/little)
  Specialized programmable cores (e.g., GPU, DSP)
  Specialized functional units (e.g., SIMD, low-precision math)
  Specialized fixed-function units (e.g., video and security engines)
  Custom chip (ASIC)

20

Example: H.264 Transcoding [ISCA’10]

  Lessons learned
  High potential for efficiency gains
  Multi-core or big/little cores are not enough
  Amortize instruction overheads, maximize data reuse
  Need extreme specialization & lots of area for highest gains

1

10

100

1000

4 cores + ILP + SIMD + custom
inst

ASIC

Performance

Energy Savings

>500x in
efficiency

21

Specialization:
Challenges Ahead
  The design problem

  Need fast & efficient design/verification of specialized units

  The cost problem
  Need to contain the cost of specialized units

  The generality problem
  Need to tradeoff efficiency Vs. flexibility and reuse
  Flexibility is also essential for future proofing

  Applications are a moving target

22

Balancing Efficiency & Flexibility
  Insight: domain-specific accelerators

  Specialize to data-flow & locality of common patterns
  Flexibility through configurable compute

  Example: convolutions in image, video, and vision processing
  Common: convolutions as map-reduce computations over stencils
  Differences: stencil dimensions and size, map and reduce operations

Data-flow Map Reduce Stencil

H.264 IME 2D convolution Abs difference Add 4x4

H.264 FME 1D convolution Multiply Add 6

SIFT DoG 2M matrix op Subtract -

SIFT Extrema 1D convolution Compare And 3

Demosaic interpolation 1D convolution Multiply Graph fusion 3

23

Balancing Efficiency & Flexibility

0"

1"

10"

100"

SIFT"("DoG" SIFT(Extrema" H.264"("FME" H.264("IME" Demosaic"

En
er
gy
"N
or
m
al
iz
ed

"T
o"
Cu

st
om

"

Custom' Convolu+on'Engine' SIMD'

  Convolution engine [ISCA’13]
  Custom register files for different access patterns
  Configurable 10b ALUs for different convolution types

  Efficiency: 2-3x worse area and energy of custom unit
  But 8-15x better than SIMD engines, 100x better than multi-core

Instruction Graph Fusion/Multi-level
Reduction Tree

Output
Register file

SIMD ALUs

1D Shift Reg

Horizontal
IF

2D Shift Register

Column
IF

2D IF

ALUs

2D Coeff
Register

1D IF 2D IF

ALU Input Port 2
ALU Input Port 1

Load/Store IF

Row Select

MAP

REDUCE

Data
Shuffle
Stage

24

Advancing Systems without
Technology Progress

  Locality-aware parallelism

  Specialization

  Reduce overprovisioning

  Increase utilization

  Approximate computing

25

Software Bloat

  Deep SW stacks needed for complex functionality
  But few optimizations target cross-layer efficiencies

  Challenge: functionality & ease of use without efficiency loss

PHP 9,298,440 ms 51,090x

Python 6,145,070 ms 33,764x

Java 348,749 ms 1816x

C 19,564 ms 107x

Tiled C 12,887 ms 71x

Vectorized 6,607 ms 36x

BLAS Parallel 182 ms 1

[S. Amarasinghe, 2011]

26

HW Bloat:
Main Memory Power in Datacenters

  Server power main energy bottleneck in datacenters
  PUE of ~1.1 the rest of the system is energy efficient

  Significant main memory (DRAM) power
  25-40% of server power across all utilization points

[U. Hoelzle and L. Barosso, 2009]

27

DDR3 Energy Characteristics
  DDR3 optimized for high bandwidth (1.5V, 800MHz)

  On chip DLLs & on-die-termination lead to high static power
  70pJ/bit @ 100%, 260pJ/bit at 10%

  LVDDR3 alternative (1.35V, 400MHz)
  Lower Vdd higher on-die-termination
  Still disproportional

  Need memory systems that consume
 lower energy and are proportional

  What metric can we trade for efficiency?

28

Memory Use in Datacenters

  Online apps rely on memory capacity, density, reliability
  Web-search and map-reduce

  CPU or DRAM latency bound

  Memory caching, DRAM-based storage, social media

  Bound by network bandwidth

  We can trade off bandwidth for energy efficiency

CPU
Utilization

Memory BW
Utilization

Disk BW
Utilization

Large-scale analytics 88% 1.6% 8%

Search 97% 5.8% 36%

Resource Utilization for Microsoft Services under Stress Testing [Micro’11]

29

Mobile DRAMs for Datacenter Servers [ISCA’12]

  Similar core, capacity, and latency as DDR3
  Interface optimized for lower power & lower bandwidth (1/2)

  No termination, lower frequency, faster power-down modes

  Energy proportional & energy efficient

5x

30

Mobile DRAMs for Datacenter Servers [ISCA’12]

  LPDDR2 module: die stacking + buffered module design
  High capacity + good signal integrity

  5x reduction in memory power, no performance loss
  Save power or increase capability in TCO neutral manner

  Unintended consequences
  Energy efficient DRAM L3 cache power now dominates

Search Memcached-a, b SPECPower SPECWeb SPECJbb

Memory Power

31

Reduce Overprovisioning:
Challenges Ahead

  Automatic cross-layer software optimizations
  Static and dynamic

  End-to-end HW design for resource efficiency
  From efficient components to efficient full-systems

  Linking resource efficiency and performance
  Key requirement for management policies

32

Advancing Systems without Technology
Progress

  Locality-aware parallelism

  Specialization

  Reduce overprovisioning

  Increase utilization

  Approximate computing

33

Server Utilization in Datacenters

  Servers dominate datacenter cost
  CapEx and OpEx

  Server resources are poorly utilized
  CPUs cores, memory, storage

61%$16%$

14%$

6%$

3%$

Servers&

Energy&

Cooling&

Networking&

Other&

[J. Hamilton, http://mvdirona.com]

Total Cost of Ownership Server utilization

[U. Hoelzle and L. Barosso, 2009]

34

Low Utilization

  Primary reasons
  Diurnal user traffic & unexpected spikes
  Planning for future traffic growth
  Difficulty of designing balanced servers

  Higher utilization through workload co-scheduling
  Analytics run on front-end servers when traffic is low
  Spiking services overflow on servers for other services
  Servers with unused resources export them to other servers

  So, why hasn’t co-scheduling solved the problem yet?

35

Interference Poor Performance & QoS
  Interference on shared resources

  Cores, caches, memory, storage, network
  Large performance losses (e.g., 40% for Google apps)

  QoS issue for latency-critical applications
  Optimized for for low 99th percentile latency in addition to throughput
  Small fraction of strugglers can lead to large QoS degradation

  Common cures lead to poor utilization
  Limited resource sharing
  Exaggerated reservations

36

Datacenter Scheduling

  Two obstacles to good performance
  Interference: sharing resources with other apps
  Heterogeneity: running on suboptimal server configuration

Scheduler

System
 State

Metrics

Apps

Loss

37

Interference-aware Scheduling [ASPLOS’13]

  Quickly classify incoming apps
  For heterogeneity and interference caused/tolerated

  Heterogeneity & interference aware scheduling
  Co-schedule apps that don’t interfere much

  Send apps to best possible server configuration

  Monitor & adapt
  Deviation from expected behavior signals error or phase change

Scheduler App
Classification

System
 State

Interferece

Heterogeneity

Learning

Metrics

Apps

38

Fast & Accurate Classification

  Cannot afford to exhaustively analyze workloads
  High churn rates of evolving and/or unknown apps

  Classification using collaborative filtering
  Similar to recommendations for movies and e-commerce
  Leverage knowledge from previously scheduled apps
  Can classify accurately within 1 min from app arrival

  For both interference and heterogeneity

Interference
scores

Initial
decomposition

SVD PQ

SGD

Reconstructed
utility matrix

Final
decomposition

SVD

resources

ap
pl

ic
at

io
ns

39

Interference-aware Scheduling [ASPLOS’13]

  5K apps on 1K EC2 instances (14 server types)

40

Interference-aware Scheduling [ASPLOS’13]

  Better performance with same resources
  Most workloads within 10% of ideal performance

41

Interference-aware Scheduling [ASPLOS’13]

  Better performance with same resources
  Most workloads within 10% of ideal performance
  Can serve additional apps without the need for more HW

Gain

42

Increase System Utilization:
Challenges Ahead

  Isolation mechanisms
  Mechanisms for fine-grain sharing and priorities
  CPU, caches, memory, I/O

  Management policies
  Latency-critical Vs. batch apps
  Static Vs. dynamic, local Vs. global policies
  Interactions with provisioning and pricing models

  Implications for application development

43

Advancing Systems without Technology
Progress

  Locality-aware parallelism

  Specialization

  Reduce overprovisioning

  Increase system utilization

  Approximate computing

44

Approximate Computing

  Now: high-precision outputs from deterministic HW
  Requires high operation count in software

  Requires high margins in hardware

  Approximate outputs are often sufficient
  Machine learning, computer vision, search, physical simulation, …

  Projected benefits: from 20% to 200x
  Performance and/or energy

45

Taxonomy of Approximation Techniques

  Inexact SW on exact HW
  E.g., code perforation, Green

  Exact SW on inexact HW
  E.g., Razor

  Inexact SW on inexact HW
  E.g., probabilistic processors, Truffle

  Approximation with neural networks
  E.g., IBM SyNAPSE, NPUs

  Analog accelerators for approximation
  E.g., Intel ETANN, Inria NPU

46

Approximate Computing:
Challenges Ahead

  End-to-end management of errors

  From user goals to HW and SW management

  What is the best way to spend the error margin?

  Tools

  Programming languages, compilers, runtime systems

  Digital Vs mixed-signal hardware

  Efficiency, practicality, robustness

47

Summary

  CMOS scaling is over & new technologies are not ready

  Potentially 2-3 decades of scaling using
  Locality-aware parallelism
  Specialization
  Reduce overprovisioning
  Increase utilization
  Approximate computing

  Cross-cutting research
  Must revisit both sides of the HW/SW interface
  Must revisit both chip and system level architecture

48

Acknowledgements

  Mark Hill (U. of Wisconsin)
  Co-organizer of ISAT study in March 2012

  ISAT study participants
  48 from academia and industry

  MAST & VLSI groups at Stanford

