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Computing is the Innovation Catalyst 

Science Government Commerce 

Healthcare Education Entertainment 

Faster, greener, cheaper 
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The Key Enabler 

  Turning exponentially increasing transistor counts into  
  Exponentially improving performance  
  At constant cost and power consumption 
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CMOS Scaling: The Past 

  Moore’s law (more transistors) + Dennard scaling (lower Vdd) 
  2.8x in chip capability per CMOS generation at constant power 
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[S. Keckler, 2011] 
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CMOS Scaling: The Present 

  Moore’s Law without Dennard scaling 
  1.4x in chip capability per generation at constant power 
  32x capability gap compared to past scaling 
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Datacenter Scaling 

  Cost reduction 
  Switch to commodity servers 
  Improved power delivery & cooling 

  Capability scaling 
  More datacenters 
  More servers per datacenter 
  Multicore servers 
  Scalable network fabrics 

one time trick 

PUE < 1.15 

@60MW per DC 

End of  voltage scaling 

>$300M per DC  
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Beyond CMOS?  

  Post CMOS technologies are not ready yet 
  Need to advance systems without technology progress 

  Need ~3 decades of scaling to cover fallow period 

80s 90s 00s 10s 20s 30s 40s 

 
Fallow Period 
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Advancing Systems without  
Technology Progress 

  Locality-aware parallelism 

  Specialization 

  Reduce overprovisioning 

  Increase utilization 

  Approximate computing 
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Parallelism wo/ Locality  Poor Scaling 

  Memory costs more than compute 
  16b INT mult:  0.5ns  2pJ 

  64b FP op:  1ns  50pJ 

  Shared cache:  10ns  1,000nJ 

  DRAM:   100ns  10,000nJ 

  It will only get worse 
  Poor scaling of long wires 

  Data-intensive applications 
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Locality-aware Parallelism 

  Scheduling for locality 
  Move work to data 

  Locality Vs balance Vs overheads 
  Conflicting constraints at large scale 
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Example: Pipeline Parallelism 

  Streaming workloads 
  App as a graph of stages communicating through queues 

  Each stage can be sequential or data-parallel 

  Arbitrary graphs allowed (multiple inputs/outputs, loops) 

  Well suited to many parallel apps & compilers 
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Scheduling Tradeoffs 
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Locality-Aware Dynamic Scheduling 

  Insight: use info available in application graph 
  Max parallelism: allow any core to work on any stage 

  Max locality: process intermediate data asap 

  Bounded footprint: account for use queues 

  Load balance: steal task without impacting locality 
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Locality-Aware Dynamic Scheduling 

  GRAMPS scheduler [PACT’11] 

  Breadth-first stage ordering: higher priority to consumers 

  Dequeue from high-priority first: good locality, small footprint 

  Steal low-priority first: good locality, less stealing 

  Backpressure to control footprint: full queue  block producers 
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Locality-Aware Dynamic Scheduling 

  On a 12-core, 24-thread x86 system 

  Perf gains: 17x over GPGPU, 2-5x over task-stealing & static 

  Energy gains: 22x over GPGPU, 5x over task-stealing & static  

  Differences become larger as we scale up  
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Locality-aware Parallelism: 
Challenges Ahead 

  Locality-aware scheduling for unstructured codes 
  E.g., collision detection, hash-join, … 

  Applications with low temporal locality 
  E.g., probabilistic inference, graph algorithms, … 

  Scheduling overheads at large-scale 
  E.g., >1K cores with fine-grain parallelism 
  HW scheduling: efficiency Vs flexibility 
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Advancing Systems without  
Technology Progress 

  Locality-aware parallelism 
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  Reduce overprovisioning 
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Specialization 
  Specialized cores are more efficient than general processor 

  In terms of energy and performance  

  Already the norm in mobile chips 
  Now appearing on server chips as well 

  Specialization flavors 
  Heterogeneous cores (e.g., big/little) 
  Specialized programmable cores (e.g., GPU, DSP) 
  Specialized functional units (e.g., SIMD, low-precision math) 
  Specialized fixed-function units (e.g., video and security engines) 
  Custom chip (ASIC) 
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Example: H.264 Transcoding [ISCA’10] 

  Lessons learned 
  High potential for efficiency gains  
  Multi-core or big/little cores are not enough 
  Amortize instruction overheads, maximize data reuse 
  Need extreme specialization & lots of area for highest gains 
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Specialization:  
Challenges Ahead 
  The design problem 

  Need fast & efficient design/verification of specialized units 

  The cost problem 
  Need to contain the cost of specialized units 

  The generality problem 
  Need to tradeoff efficiency Vs. flexibility and reuse 
  Flexibility is also essential for future proofing 

  Applications are a moving target 
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Balancing Efficiency & Flexibility 
  Insight: domain-specific accelerators 

  Specialize to data-flow & locality of common patterns 
  Flexibility through configurable compute 

  Example: convolutions in image, video, and vision processing 
  Common: convolutions as map-reduce computations over stencils 
  Differences: stencil dimensions and size, map and reduce operations 

Data-flow Map Reduce Stencil 

H.264 IME  2D convolution Abs difference Add 4x4 

H.264 FME 1D convolution Multiply Add 6 

SIFT DoG 2M matrix op Subtract -  

SIFT Extrema 1D convolution Compare And 3 

Demosaic interpolation  1D convolution Multiply Graph fusion 3 
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Balancing Efficiency & Flexibility 
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  Convolution engine [ISCA’13] 
  Custom register files for different access patterns 
  Configurable 10b ALUs for different convolution types 

  Efficiency: 2-3x worse area and energy of custom unit  
  But 8-15x better than SIMD engines, 100x better than multi-core 
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Software Bloat 

  Deep SW stacks needed for complex functionality 
  But few optimizations target cross-layer efficiencies 

  Challenge: functionality & ease of use without efficiency loss 

PHP 9,298,440 ms 51,090x 

Python 6,145,070 ms 33,764x 

Java 348,749 ms 1816x 

C 19,564 ms 107x 

Tiled C 12,887 ms 71x 

Vectorized 6,607 ms 36x 

BLAS Parallel 182 ms 1 

[S. Amarasinghe, 2011] 
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HW Bloat: 
Main Memory Power in Datacenters 

  Server power main energy bottleneck in datacenters 
  PUE of ~1.1  the rest of the system is energy efficient 

  Significant main memory (DRAM) power 
  25-40% of server power across all utilization points 

[U. Hoelzle and L. Barosso, 2009]  
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DDR3 Energy Characteristics 
  DDR3 optimized for high bandwidth (1.5V,  800MHz)  

  On chip DLLs &  on-die-termination lead to high static power 
  70pJ/bit  @ 100%, 260pJ/bit at 10% 

  LVDDR3 alternative (1.35V,  400MHz) 
  Lower Vdd  higher on-die-termination 
  Still disproportional 

  Need memory systems that consume 
     lower energy and are proportional 

  What metric can we trade for efficiency? 
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Memory Use in Datacenters 

  Online apps rely on memory capacity, density, reliability 
  Web-search and map-reduce 

  CPU or DRAM latency bound 

  Memory caching,  DRAM-based storage,  social media 

  Bound by network bandwidth 

  We can trade off bandwidth for energy efficiency  

CPU 
Utilization 

Memory BW 
Utilization 

Disk BW 
Utilization 

Large-scale analytics 88% 1.6% 8% 

Search 97% 5.8% 36% 

Resource Utilization for Microsoft Services under Stress Testing [Micro’11] 
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Mobile DRAMs for Datacenter Servers [ISCA’12] 

  Similar core, capacity, and latency as DDR3 
  Interface optimized for lower power & lower bandwidth (1/2) 

  No termination, lower frequency, faster power-down modes 

  Energy proportional & energy efficient 

5x 
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Mobile DRAMs for Datacenter Servers [ISCA’12] 

  LPDDR2 module: die stacking + buffered module design 
  High capacity + good signal integrity  

  5x reduction in memory power, no performance loss 
  Save power or increase capability in TCO neutral manner 

  Unintended consequences 
  Energy efficient DRAM  L3 cache power now dominates 

Search        Memcached-a, b SPECPower SPECWeb SPECJbb 

Memory Power 
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Reduce Overprovisioning: 
Challenges Ahead 

  Automatic cross-layer software optimizations 
  Static and dynamic  

  End-to-end HW design for resource efficiency 
  From efficient components to efficient full-systems 

  Linking resource efficiency and performance 
  Key requirement for management policies 
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Server Utilization in Datacenters 

  Servers dominate datacenter cost 
  CapEx and OpEx 

  Server resources are poorly utilized 
  CPUs cores, memory, storage  

61%$16%$

14%$

6%$

3%$

Servers&

Energy&

Cooling&

Networking&

Other&

[J. Hamilton, http://mvdirona.com]  

Total Cost of Ownership Server utilization 

[U. Hoelzle and L. Barosso, 2009]  
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Low Utilization 

  Primary reasons 
  Diurnal user traffic & unexpected spikes 
  Planning for future traffic growth 
  Difficulty of designing balanced servers 

  Higher utilization through workload co-scheduling 
  Analytics run on front-end servers when traffic is low 
  Spiking services overflow on servers for other services 
  Servers with unused resources export them to other servers 

  So, why hasn’t co-scheduling solved the problem yet?  
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Interference Poor Performance & QoS 
  Interference on shared resources 

  Cores, caches, memory, storage, network 
  Large performance losses (e.g., 40% for Google apps) 

  QoS issue for latency-critical applications 
  Optimized for for low 99th percentile latency in addition to throughput 
  Small fraction of strugglers can lead to large QoS degradation 

  Common cures lead to poor utilization 
  Limited resource sharing  
  Exaggerated reservations 
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Datacenter Scheduling  

  Two obstacles to good performance 
  Interference: sharing resources with other apps 
  Heterogeneity: running on suboptimal server configuration 
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Interference-aware Scheduling [ASPLOS’13] 

  Quickly classify incoming apps 
  For heterogeneity and interference caused/tolerated 

  Heterogeneity & interference aware scheduling 
  Co-schedule apps that don’t interfere much  

  Send apps to best possible server configuration 

  Monitor & adapt 
  Deviation from expected behavior signals error or phase change  

Scheduler App 
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Fast & Accurate Classification 

  Cannot afford to exhaustively analyze workloads 
  High churn rates of evolving and/or unknown apps 

  Classification using collaborative filtering 
  Similar to recommendations for movies and e-commerce 
  Leverage knowledge from previously scheduled apps 
  Can classify accurately within 1 min from app arrival 

  For both interference and heterogeneity  
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Interference-aware Scheduling [ASPLOS’13] 

  5K apps on 1K EC2 instances (14 server types) 
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Interference-aware Scheduling [ASPLOS’13] 

  Better performance with same resources 
  Most workloads within 10% of ideal performance 
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Interference-aware Scheduling [ASPLOS’13] 

  Better performance with same resources 
  Most workloads within 10% of ideal performance 
  Can serve additional apps without the need for more HW 

Gain 
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Increase System Utilization:  
Challenges Ahead 

  Isolation mechanisms 
  Mechanisms for fine-grain sharing and priorities 
  CPU, caches, memory, I/O 

  Management policies 
  Latency-critical Vs. batch apps 
  Static Vs. dynamic, local Vs. global policies 
  Interactions with provisioning and pricing models 

  Implications for application development 
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Advancing Systems without Technology 
Progress 

  Locality-aware parallelism 

  Specialization 

  Reduce overprovisioning 

  Increase system utilization 

  Approximate computing 
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Approximate Computing 

  Now: high-precision outputs from deterministic HW 
  Requires high operation count in software 

  Requires high margins in hardware 
  

  Approximate outputs are often sufficient 
  Machine learning, computer vision, search, physical simulation, … 

  Projected benefits: from 20% to 200x 
  Performance and/or energy 
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Taxonomy of Approximation Techniques 

  Inexact SW on exact HW 
  E.g., code perforation, Green 

  Exact SW on inexact HW 
  E.g., Razor 

  Inexact SW on inexact HW 
  E.g., probabilistic processors, Truffle 

  Approximation with neural networks 
  E.g., IBM SyNAPSE, NPUs 

  Analog accelerators for approximation 
  E.g., Intel ETANN, Inria NPU 
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Approximate Computing: 
Challenges Ahead 

  End-to-end management of errors 

  From user goals to HW and SW management 

  What is the best way to spend the error margin? 

  Tools 

  Programming languages, compilers, runtime systems 

  Digital Vs mixed-signal hardware 

  Efficiency, practicality, robustness 
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Summary 

  CMOS scaling is over & new technologies are not ready 

  Potentially 2-3 decades of scaling using 
  Locality-aware parallelism 
  Specialization 
  Reduce overprovisioning 
  Increase utilization 
  Approximate computing 

  Cross-cutting research 
  Must revisit both sides of the HW/SW interface 
  Must revisit both chip and system level architecture 
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