
Advancing Computer Systems
without Technology Progress

Christos Kozyrakis

Stanford University
http://csl.stanford.edu/~christos

ISPASS Keynote – April 23rd 2013

2

Computing is the Innovation Catalyst

Science Government Commerce

Healthcare Education Entertainment

Faster, greener, cheaper

3

The Key Enabler

  Turning exponentially increasing transistor counts into
  Exponentially improving performance
  At constant cost and power consumption

4

CMOS Scaling: The Past

  Moore’s law (more transistors) + Dennard scaling (lower Vdd)
  2.8x in chip capability per CMOS generation at constant power

Chip Capability

C
hi

p
Po

w
er

1.0 1.5 2.0

2.5

3.0 2.5

1.5

2.0

3.0

2x transistors

1.4x frequency

0.7x voltage

0.7x capacitance

2.8x capability, same power

[S. Keckler, 2011]

5

CMOS Scaling: The Present

  Moore’s Law without Dennard scaling
  1.4x in chip capability per generation at constant power
  32x capability gap compared to past scaling

Chip Capability

C
hi

p
Po

w
er

1.0 1.5 2.0

2.5

3.0 2.5

1.5

2.0

3.0

2x transistors
0.7x capacitance

32x gap per decade

[S. Keckler, 2011]

6

Datacenter Scaling

  Cost reduction
  Switch to commodity servers
  Improved power delivery & cooling

  Capability scaling
  More datacenters
  More servers per datacenter
  Multicore servers
  Scalable network fabrics

one time trick

PUE < 1.15

@60MW per DC

End of voltage scaling

>$300M per DC

7

Beyond CMOS?

  Post CMOS technologies are not ready yet
  Need to advance systems without technology progress

  Need ~3 decades of scaling to cover fallow period

80s 90s 00s 10s 20s 30s 40s

Fallow Period

Our Challenge

C
hi

p
C

ap
ab

ili
ty

 (
lo

g)

8

Advancing Systems without
Technology Progress

  Locality-aware parallelism

  Specialization

  Reduce overprovisioning

  Increase utilization

  Approximate computing

9

Advancing Systems without
Technology Progress

  Locality-aware parallelism

  Specialization

  Reduce overprovisioning

  Increase utilization

  Approximate computing

10

Parallelism wo/ Locality  Poor Scaling

  Memory costs more than compute
  16b INT mult: 0.5ns 2pJ

  64b FP op: 1ns 50pJ

  Shared cache: 10ns 1,000nJ

  DRAM: 100ns 10,000nJ

  It will only get worse
  Poor scaling of long wires

  Data-intensive applications

Shared Cache

Core
1

Coherence Directory

DRAM

Priv
Cache

Core
2

Priv
Cache

Core
3

Priv
Cache

Core
4

Priv
Cache

Core
1024

Priv
Cache …

Shared Cache

Core Core Core Core

Coherence Directory

DRAM

Private
Cache

Private
Cache

Private
Cache

Private
Cache

11

Locality-aware Parallelism

  Scheduling for locality
  Move work to data

  Locality Vs balance Vs overheads
  Conflicting constraints at large scale

Shared Cache

Core
1

Coherence Directory

DRAM

Priv
Cache

Core
2

Priv
Cache

Core
3

Priv
Cache

Core
4

Priv
Cache

Core
1024

Priv
Cache …

12

Example: Pipeline Parallelism

  Streaming workloads
  App as a graph of stages communicating through queues

  Each stage can be sequential or data-parallel

  Arbitrary graphs allowed (multiple inputs/outputs, loops)

  Well suited to many parallel apps & compilers

Camera&Camera&Camera&Tiler& Sampler& Camera&Camera&Intersect&
Camera&Camera&Shade& Camera&Camera&

Shadow&
Intersect&

Frame&
Buffer&

Ray$tracing$pipeline$

13

Scheduling Tradeoffs

Max parallelism

Load balancing

Locality-aware

Bounded footprint

Low overheads

GPGPU
(CUDA, OpenCL)

  $

$

$



Task-stealing
(Cilk, X10)



$

$



Static
(StreamIt, Delite)


$


$



Camera Camera Kernel 1

Camera Camera Kernel 2

Dequeue

T0& T1& Tn&
Enqueue

Steal

14

Locality-Aware Dynamic Scheduling

  Insight: use info available in application graph
  Max parallelism: allow any core to work on any stage

  Max locality: process intermediate data asap

  Bounded footprint: account for use queues

  Load balance: steal task without impacting locality

Camera Camera

Camera Camera

3

2
1 4

15

Locality-Aware Dynamic Scheduling

  GRAMPS scheduler [PACT’11]

  Breadth-first stage ordering: higher priority to consumers

  Dequeue from high-priority first: good locality, small footprint

  Steal low-priority first: good locality, less stealing

  Backpressure to control footprint: full queue  block producers

Camera Camera

Camera Camera

3

2
1 4 2$

2$
2$
2$

3$
3$

4$1$

Dequeue order

Steal order

16

Locality-Aware Dynamic Scheduling

  On a 12-core, 24-thread x86 system

  Perf gains: 17x over GPGPU, 2-5x over task-stealing & static

  Energy gains: 22x over GPGPU, 5x over task-stealing & static

  Differences become larger as we scale up

0$

5$

10$

15$

20$

25$

Execu=on&Time& Memory&Footprint&

GRAMPS& GPGPU& TaskFstealing& Sta=c&

17

Locality-aware Parallelism:
Challenges Ahead

  Locality-aware scheduling for unstructured codes
  E.g., collision detection, hash-join, …

  Applications with low temporal locality
  E.g., probabilistic inference, graph algorithms, …

  Scheduling overheads at large-scale
  E.g., >1K cores with fine-grain parallelism
  HW scheduling: efficiency Vs flexibility

18

Advancing Systems without
Technology Progress

  Locality-aware parallelism

  Specialization

  Reduce overprovisioning

  Increase utilization

  Approximate computing

19

Specialization
  Specialized cores are more efficient than general processor

  In terms of energy and performance

  Already the norm in mobile chips
  Now appearing on server chips as well

  Specialization flavors
  Heterogeneous cores (e.g., big/little)
  Specialized programmable cores (e.g., GPU, DSP)
  Specialized functional units (e.g., SIMD, low-precision math)
  Specialized fixed-function units (e.g., video and security engines)
  Custom chip (ASIC)

20

Example: H.264 Transcoding [ISCA’10]

  Lessons learned
  High potential for efficiency gains
  Multi-core or big/little cores are not enough
  Amortize instruction overheads, maximize data reuse
  Need extreme specialization & lots of area for highest gains

1

10

100

1000

4 cores + ILP + SIMD + custom
inst

ASIC

Performance

Energy Savings

>500x in
efficiency

21

Specialization:
Challenges Ahead
  The design problem

  Need fast & efficient design/verification of specialized units

  The cost problem
  Need to contain the cost of specialized units

  The generality problem
  Need to tradeoff efficiency Vs. flexibility and reuse
  Flexibility is also essential for future proofing

  Applications are a moving target

22

Balancing Efficiency & Flexibility
  Insight: domain-specific accelerators

  Specialize to data-flow & locality of common patterns
  Flexibility through configurable compute

  Example: convolutions in image, video, and vision processing
  Common: convolutions as map-reduce computations over stencils
  Differences: stencil dimensions and size, map and reduce operations

Data-flow Map Reduce Stencil

H.264 IME 2D convolution Abs difference Add 4x4

H.264 FME 1D convolution Multiply Add 6

SIFT DoG 2M matrix op Subtract -

SIFT Extrema 1D convolution Compare And 3

Demosaic interpolation 1D convolution Multiply Graph fusion 3

23

Balancing Efficiency & Flexibility

0"

1"

10"

100"

SIFT"("DoG" SIFT(Extrema" H.264"("FME" H.264("IME" Demosaic"

En
er
gy
"N
or
m
al
iz
ed

"T
o"
Cu

st
om

"

Custom' Convolu+on'Engine' SIMD'

  Convolution engine [ISCA’13]
  Custom register files for different access patterns
  Configurable 10b ALUs for different convolution types

  Efficiency: 2-3x worse area and energy of custom unit
  But 8-15x better than SIMD engines, 100x better than multi-core

Instruction Graph Fusion/Multi-level
Reduction Tree

Output
Register file

SIMD ALUs

1D Shift Reg

Horizontal
IF

2D Shift Register

Column
IF

2D IF

ALUs

2D Coeff
Register

1D IF 2D IF

ALU Input Port 2
ALU Input Port 1

Load/Store IF

Row Select

MAP

REDUCE

Data
Shuffle
Stage

24

Advancing Systems without
Technology Progress

  Locality-aware parallelism

  Specialization

  Reduce overprovisioning

  Increase utilization

  Approximate computing

25

Software Bloat

  Deep SW stacks needed for complex functionality
  But few optimizations target cross-layer efficiencies

  Challenge: functionality & ease of use without efficiency loss

PHP 9,298,440 ms 51,090x

Python 6,145,070 ms 33,764x

Java 348,749 ms 1816x

C 19,564 ms 107x

Tiled C 12,887 ms 71x

Vectorized 6,607 ms 36x

BLAS Parallel 182 ms 1

[S. Amarasinghe, 2011]

26

HW Bloat:
Main Memory Power in Datacenters

  Server power main energy bottleneck in datacenters
  PUE of ~1.1  the rest of the system is energy efficient

  Significant main memory (DRAM) power
  25-40% of server power across all utilization points

[U. Hoelzle and L. Barosso, 2009]

27

DDR3 Energy Characteristics
  DDR3 optimized for high bandwidth (1.5V, 800MHz)

  On chip DLLs & on-die-termination lead to high static power
  70pJ/bit @ 100%, 260pJ/bit at 10%

  LVDDR3 alternative (1.35V, 400MHz)
  Lower Vdd  higher on-die-termination
  Still disproportional

  Need memory systems that consume
 lower energy and are proportional

  What metric can we trade for efficiency?

28

Memory Use in Datacenters

  Online apps rely on memory capacity, density, reliability
  Web-search and map-reduce

  CPU or DRAM latency bound

  Memory caching, DRAM-based storage, social media

  Bound by network bandwidth

  We can trade off bandwidth for energy efficiency

CPU
Utilization

Memory BW
Utilization

Disk BW
Utilization

Large-scale analytics 88% 1.6% 8%

Search 97% 5.8% 36%

Resource Utilization for Microsoft Services under Stress Testing [Micro’11]

29

Mobile DRAMs for Datacenter Servers [ISCA’12]

  Similar core, capacity, and latency as DDR3
  Interface optimized for lower power & lower bandwidth (1/2)

  No termination, lower frequency, faster power-down modes

  Energy proportional & energy efficient

5x

30

Mobile DRAMs for Datacenter Servers [ISCA’12]

  LPDDR2 module: die stacking + buffered module design
  High capacity + good signal integrity

  5x reduction in memory power, no performance loss
  Save power or increase capability in TCO neutral manner

  Unintended consequences
  Energy efficient DRAM  L3 cache power now dominates

Search Memcached-a, b SPECPower SPECWeb SPECJbb

Memory Power

31

Reduce Overprovisioning:
Challenges Ahead

  Automatic cross-layer software optimizations
  Static and dynamic

  End-to-end HW design for resource efficiency
  From efficient components to efficient full-systems

  Linking resource efficiency and performance
  Key requirement for management policies

32

Advancing Systems without Technology
Progress

  Locality-aware parallelism

  Specialization

  Reduce overprovisioning

  Increase utilization

  Approximate computing

33

Server Utilization in Datacenters

  Servers dominate datacenter cost
  CapEx and OpEx

  Server resources are poorly utilized
  CPUs cores, memory, storage

61%$16%$

14%$

6%$

3%$

Servers&

Energy&

Cooling&

Networking&

Other&

[J. Hamilton, http://mvdirona.com]

Total Cost of Ownership Server utilization

[U. Hoelzle and L. Barosso, 2009]

34

Low Utilization

  Primary reasons
  Diurnal user traffic & unexpected spikes
  Planning for future traffic growth
  Difficulty of designing balanced servers

  Higher utilization through workload co-scheduling
  Analytics run on front-end servers when traffic is low
  Spiking services overflow on servers for other services
  Servers with unused resources export them to other servers

  So, why hasn’t co-scheduling solved the problem yet?

35

Interference Poor Performance & QoS
  Interference on shared resources

  Cores, caches, memory, storage, network
  Large performance losses (e.g., 40% for Google apps)

  QoS issue for latency-critical applications
  Optimized for for low 99th percentile latency in addition to throughput
  Small fraction of strugglers can lead to large QoS degradation

  Common cures lead to poor utilization
  Limited resource sharing
  Exaggerated reservations

36

Datacenter Scheduling

  Two obstacles to good performance
  Interference: sharing resources with other apps
  Heterogeneity: running on suboptimal server configuration

Scheduler

System
 State

Metrics

Apps

Loss

37

Interference-aware Scheduling [ASPLOS’13]

  Quickly classify incoming apps
  For heterogeneity and interference caused/tolerated

  Heterogeneity & interference aware scheduling
  Co-schedule apps that don’t interfere much

  Send apps to best possible server configuration

  Monitor & adapt
  Deviation from expected behavior signals error or phase change

Scheduler App
Classification

System
 State

Interferece

Heterogeneity

Learning

Metrics

Apps

38

Fast & Accurate Classification

  Cannot afford to exhaustively analyze workloads
  High churn rates of evolving and/or unknown apps

  Classification using collaborative filtering
  Similar to recommendations for movies and e-commerce
  Leverage knowledge from previously scheduled apps
  Can classify accurately within 1 min from app arrival

  For both interference and heterogeneity

Interference
scores

Initial
decomposition

SVD PQ

SGD

Reconstructed
utility matrix

Final
decomposition

SVD

resources

ap
pl

ic
at

io
ns

39

Interference-aware Scheduling [ASPLOS’13]

  5K apps on 1K EC2 instances (14 server types)

40

Interference-aware Scheduling [ASPLOS’13]

  Better performance with same resources
  Most workloads within 10% of ideal performance

41

Interference-aware Scheduling [ASPLOS’13]

  Better performance with same resources
  Most workloads within 10% of ideal performance
  Can serve additional apps without the need for more HW

Gain

42

Increase System Utilization:
Challenges Ahead

  Isolation mechanisms
  Mechanisms for fine-grain sharing and priorities
  CPU, caches, memory, I/O

  Management policies
  Latency-critical Vs. batch apps
  Static Vs. dynamic, local Vs. global policies
  Interactions with provisioning and pricing models

  Implications for application development

43

Advancing Systems without Technology
Progress

  Locality-aware parallelism

  Specialization

  Reduce overprovisioning

  Increase system utilization

  Approximate computing

44

Approximate Computing

  Now: high-precision outputs from deterministic HW
  Requires high operation count in software

  Requires high margins in hardware

  Approximate outputs are often sufficient
  Machine learning, computer vision, search, physical simulation, …

  Projected benefits: from 20% to 200x
  Performance and/or energy

45

Taxonomy of Approximation Techniques

  Inexact SW on exact HW
  E.g., code perforation, Green

  Exact SW on inexact HW
  E.g., Razor

  Inexact SW on inexact HW
  E.g., probabilistic processors, Truffle

  Approximation with neural networks
  E.g., IBM SyNAPSE, NPUs

  Analog accelerators for approximation
  E.g., Intel ETANN, Inria NPU

46

Approximate Computing:
Challenges Ahead

  End-to-end management of errors

  From user goals to HW and SW management

  What is the best way to spend the error margin?

  Tools

  Programming languages, compilers, runtime systems

  Digital Vs mixed-signal hardware

  Efficiency, practicality, robustness

47

Summary

  CMOS scaling is over & new technologies are not ready

  Potentially 2-3 decades of scaling using
  Locality-aware parallelism
  Specialization
  Reduce overprovisioning
  Increase utilization
  Approximate computing

  Cross-cutting research
  Must revisit both sides of the HW/SW interface
  Must revisit both chip and system level architecture

48

Acknowledgements

  Mark Hill (U. of Wisconsin)
  Co-organizer of ISAT study in March 2012

  ISAT study participants
  48 from academia and industry

  MAST & VLSI groups at Stanford

