Advancing Computer Systems

without Technology Progress

Christos Kozyrakis

Stanford University

http:/ /csl.stanford.edu/~christos

ISPASS Keynote — April 232013

Computing is the Innovation Catalyst

= |
Commerce

Healthcare Entertainment

\

Faster, greener, cheaper

The Key Enabler

Intel 8-core Xeon Nehalem-EX

IBM Power6

Intel 4-core Itanium Tukwila

10,000,000,000 Intel Dual-Core Itanium 2 \

m ® Intel
Core |7

1,000,000,000 Intel Itanium 2 with 9MB cache m] /(Quad)

Intel Core 2 Quad]

Intel Itanium 2 AMD K10
AMD K7 IBM\ Intel

100,000,000 AMD K-l m\ €l g core2Duo

AMDKE m Intel \AMDKB \
Pentium 4

10,000,000 "L) AMD Barton " Intel

™ Intel Pentium Il Atom

Intel 486 .
Intel Pentium Intel Pentium Il

1,000,000

Intel 286 Intel 386
100,000 [intel 8008

Intel 8088
10,000
[]

Intel 8080

1000 Intel 4004

® Turning exponentially increasing transistor counts into
m Exponentially improving performance

m At constant cost and power consumption

CMOS Scaling: The Past

[S. Keckler, 201 1]

3.00

1.4x frequency

capacitance

2x transistors voltage

Chip Power

2.8x capability, same power

2.0
Chip Capability

B Moore’s law (more transistors) + Dennard scaling (lower V)

m 2.8x in chip capability per CMOS generation at constant power

CMOS Scaling: The Present

[S. Keckler, 201 1]

3.00

2.5®

0.7x capacitance

Chip Power

2x transistors

\

L L
2.0 2.5
Chip Capability

B Moore’s Law without Dennard scaling

m 1.4x in chip capability per generation at constant power

m 32x capability gap compared to past scaling

Datacenter Scaling

B Cost reduction

m Switchteecommodity—servers— one time trick
m imprevec-peower—edelivery—E&—~ceoling— PUE < 1.15

B Capability scaling
m More—detecenters— >$300M per DC
@60MW per DC

End of voltage scaling

m Scalable network fabrics

Beyond CMOS?

A

Chip Capability (log)

Fallow Period

80s 90s 00s 10s 20s 30s 40s

m Post CMOS technologies are not ready yet

B Need to advance systems without technology progress

® Need ~3 decades of scaling to cover fallow period

Advancing Systems without
Technology Progress

® Locality-aware parallelism

B Specialization

B Reduce overprovisioning

B Increase utilization

B Approximate computing

Advancing Systems without
Technology Progress

® Locality-aware parallelism

Parallelism wo/ Locality =2 Poor Scaling

B Memory costs more than compute
m 16b INT mult: 0.5ns 2p)
m 64b FP op: Ins 50p)
Shared Cache m Shared cache: 10ns 1,000n)
= DRAM: 100ns 10,000n)

Coherence Directory

Private * Private Private

Cache 1 Cache @ Cache °
0 e m It will only get worse

Core . Core Core m Poor scaling of long wires

m Data-intensive applications

Locality-aware Parallelism

m Scheduling for locality

m Move work to data

Shared Cache ® Locality Vs balance Vs overheads

m Conflicting constraints at large scale
Coherence Directory

Example: Pipeline Parallelism

—N\ Shadow
y Sampler

Intersect

Ray tracing pipeline

® Streaming workloads
m App as a graph of stages communicating through queues
m Each stage can be sequential or data-parallel

= Arbitrary graphs allowed (multiple inputs/outputs, loops)

B Well suited to many parallel apps & compilers

Scheduling Tradeoffs

GPGPU Task-stealing Static
(CUDA, OpenCl) (Cilk, X10) (Streamlt, Delite)

Max parallelism x 4
Load balancing
Locality-aware
Bounded footprint

Low overheads

| Dequeue Enqueuei

L 2

Kernel 2
—)

]
v A

Locality-Aware Dynamic Scheduling

OQ ©

B Insight: use info available in application graph
® Max parallelism: allow any core to work on any stage
® Max locality: process intermediate data asap

m Bounded footprint: account for use queues

®= Load balance: steal task without impacting locality

Locality-Aware Dynamic Scheduling

Dequeue order

Q <
O O 2

Steal order

B GRAMPS scheduler [PACT’'11]
m Breadth-first stage ordering: higher priority to consumers
m Dequeue from high-priority first: good locality, small footprint
m Steal low-priority first: good locality, less stealing

m Backpressure to control footprint: full queue = block producers

Locality-Aware Dynamic Scheduling

“ GRAMPS & GPGPU Task-stealing « Static

-

Execution Time Memory Footprint

On a 12-core, 24-thread x86 system
m Perf gains: 17x over GPGPU, 2-5x over task-stealing & static
m Energy gains: 22x over GPGPU, 5x over task-stealing & static

m Differences become larger as we scale up

Locality-aware Parallelism:
Challenges Ahead

B Locality-aware scheduling for unstructured codes

m E.g., collision detection, hash-join, ...

B Applications with low temporal locality

m E.g., probabilistic inference, graph algorithms, ...

B Scheduling overheads at large-scale

m E.g., > 1K cores with fine-grain parallelism

® HW scheduling: efficiency Vs flexibility

Advancing Systems without
Technology Progress

B Specialization

Specialization

B Specialized cores are more efficient than general processor

m |n terms of energy and performance

m Already the norm in mobile chips

® Now appearing on server chips as well

B Specialization flavors
m Heterogeneous cores (e.g., big/little)
Specialized programmable cores (e.g., GPU, DSP)
Specialized functional units (e.g., SIMD, low-precision math)
Specialized fixed-function units (e.g., video and security engines)
Custom chip (ASIC)

Example: H.264 Transcoding [1sca' 0]

1000
=t=Performance

«=E=~Energy Savings

>500x in
efficiency

\4

4 cores + ILP + SIMD + custom ASIC
inst

1 -

Lessons learned
m High potential for efficiency gains
= Multi-core or big/little cores are not enough

m Amortize instruction overheads, maximize data reuse

= Need extreme specialization & lots of area for highest gains

Specialization:
Challenges Ahead

® The design problem
= Need fast & efficient design/verification of specialized units
B The cost problem

= Need to contain the cost of specialized units

40/55 vs 55/80 x'over: 28/40 vs 30/55:

20/28 vs 28/a0: 11Q .

Balancing Efficiency & Flexibility

B Insight: domain-specific accelerators
m Specialize to data-flow & locality of common patterns

m Flexibility through configurable compute

m Example: convolutions in image, video, and vision processing
m Common: convolutions as map-reduce computations over stencils

m Differences: stencil dimensions and size, map and reduce operations

—m_m

H.264 IME 2D convolution Abs difference Add

H.264 FME 1D convolution Multiply Add

SIFT DoG 2M matrix op Subtract -

SIFT Extrema 1D convolution Compare And 3

Demosaic interpolation 1D convolution Multiply Graph fusion 3

Balancing Efficiency & Flexibility

O Custom M Convolution Engine BESIMD

Energy Normalized To Custom

Instruction Graph Fusion/Multi-level
Reduction Tree

REDUCE

SIFT-DoG SIFT-Extrema H.264-FME H.264- IME Demosaic

B Convolution engine [ISCA’1 3]
m Custom register files for different access patterns
m Configurable 10b ALUs for different convolution types
B Efficiency: 2-3x worse area and energy of custom unit
m But 8-15x better than SIMD engines, 100x better than multi-core

Advancing Systems without
Technology Progress

B Reduce overprovisioning

Software Bloat

[S. Amarasinghe, 2011]

9,298,440 ms 51,090x

6,145,070 ms 33,764x

348,749 ms 1816x

19,564 ms

Tiled C 12,887 ms

Vectorized 6,607 ms

BLAS Parallel

B Deep SW stacks needed for complex functionality

m But few optimizations target cross-layer efficiencies

B Challenge: functionality & ease of use without efficiency loss

HW Bloat:
Main Memory Power in Datacenters

ECPU EDRAM Disk Other

43 50 57 64 71 79 86 93

100

Compute load (%) [U. Hoelzle and L. Barosso, 2009]

B Server power main energy bottleneck in datacenters

m PUE of ~1.1 > the rest of the system is energy efficient

m Significant main memory (DRAM) power

m 25-40% of server power across all utilization points

DDR3 Energy Characteristics

m DDR3 optimized for high bandwidth (1.5V, 800MHz)

m On chip DLLs & on-die-termination lead to high static power
= 70pJ/bit @ 100%, 260pJ/bit at 10%

m LVDDR3 alternative (1.35V, 400MHz)

m Lower Vdd =2 higher on-die-termination

m Still disproportional

B Need memory systems that consume

Energy per bit (pJ/bit)

lower energy and are proportional

——LVDDR3-800 |
--DDR3-1600

® What metric can we trade for efficiency?

0 1.28 2.56 3.84 512 6.4 7.68

10.24 12.8

Sustained channel bandwidth (GBI/s)

27

Memory Use in Datacenters

Resource Utilization for Microsoft Services under Stress Testing [Micro’11]

CPU Memory BW Disk BW
Utilization Utilization Utilization

Large-scale analytics 1.6%

Search 5.8%

®m Online apps rely on memory capacity, density, reliability

B Web-search and map-reduce

= CPU or DRAM latency bound

® Memory caching, DRAM-based storage, social media

= Bound by network bandwidth

B We can trade off bandwidth for energy efficiency

Mobile DRAMs for Datacenter Servers [1sca2]

280 T T T T T e —
2601 | , —~LVDDR3-800
-~ DDR3-1600
240 -©-LPDDR2-800 |
220 !

5200»
3180— -
= 160- |
2 140
g

2120
gmo
S so- |

60"
40-

20

07128 256 3.84 512 64 7.68 10.24
Sustained channel bandwidth (GB/s)

B Similar core, capacity, and latency as DDR3

® Interface optimized for lower power & lower bandwidth (/)

= No termination, lower frequency, faster power-down modes

®m Energy proportional & energy efficient

Mobile DRAMs for Datacenter Servers [1sca’2]

Memory Power

[lterm

[refresh

Ml rd/wridq
Mact
| IMidle

\
y
D/Q o 1.2.5.6 .
D/Q 3478
1 } T
T i h I
1y L [
' ') [
B2 15 =) 15
B B !
I " " "
[i I b
N o [
|
\
4 2Gb Devices : 3
per Package] N H

Search Memcached-a,b SPECPower SPECWeb SPEC]bb

m LPDDR2 module: die stacking + buffered module design
m High capacity + good signal integrity

m 5x reduction in memory power, no performance loss
m Save power or increase capability in TCO neutral manner

® Unintended consequences

m Energy efficient DRAM = L3 cache power now dominates

Reduce Overprovisioning:
Challenges Ahead

m Automatic cross-layer software optimizations

m Static and dynamic

B End-to-end HW design for resource efficiency

m From efficient components to efficient full-systems

B Linking resource efficiency and performance

m Key requirement for management policies

Advancing Systems without Technology
Progress

B Increase utilization

Server Utilization in Datacenters

Total Cost of Ownership Server utilization

3%

6% “ Servers

14% \ “ Energy

Cooling

16% .
L. Networking
.. Other
0

Fraction of Time

0 01 02 03 04 05 06 07 08 09
CPU Utilization

[J. Hamilton, http://mvdirona.com] [U. Hoelzle and L. Barosso, 2009]

B Servers dominate datacenter cost
m CapEx and OpEx

m Server resources are poorly utilized

m CPUs cores, memory, storage

Low Utilization

® Primary reasons
m Diurnal user traffic & unexpected spikes
® Planning for future traffic growth

m Difficulty of designing balanced servers

®m Higher utilization through workload co-scheduling
®= Analytics run on front-end servers when traffic is low
m Spiking services overflow on servers for other services

m Servers with unused resources export them to other servers

B So, why hasn’t co-scheduling solved the problem yete

Interference= Poor Performance & QoS

Interference on shared resources
m Cores, caches, memory, storage, network

®m Large performance losses (e.g., 40% for Google apps)

B QoS issue for latency-critical applications

m Optimized for for low 99" percentile latency in addition to throughput

m Small fraction of strugglers can lead to large QoS degradation

m Common cures lead to poor utilization

m Limited resource sharing

m Exaggerated reservations

Datacenter Scheduling

Alone on Best Platform
-- Least Loaded

[a—
(N}

Apps —>| Scheduler

(|

System Metrics
State

[S—

~

(-
T

o o o o
N B O

—
p—
—
-

Speedup over Alone on Best Platform

1000 2000 3000 4000
Workloads

B Two obstacles to good performance
m Interference: sharing resources with other apps

m Heterogeneity: running on suboptimal server configuration

5000

Interference-aware Scheduling aspLos13]

Learning
Interferece
A >
PP q Scheduler

Classification
Heterogeneity T T

System Metrics
State

m Quickly classify incoming apps
m For heterogeneity and interference caused /tolerated
B Heterogeneity & interference aware scheduling
m Co-schedule apps that don’t interfere much
m Send apps to best possible server configuration
® Monitor & adapt

m Deviation from expected behavior signals error or phase change

Fast & Accurate Classification

resources
54
3 P

24 Q

—> 5 =

= SGD

—> ot 5

scores decomposition utility matrix decomposition

N=01iWW bh
W UuILI WL —

—) == DO = 1
WHh W= e 1

NHWNBRNNN O
- WNwWwhhbh U

applications

(6]
H

Cannot afford to exhaustively analyze workloads

= High churn rates of evolving and/or unknown apps

Classification using collaborative filtering

m Similar to recommendations for movies and e-commerce
m Leverage knowledge from previously scheduled apps

m Can classify accurately within T min from app arrival

= For both interference and heterogeneity

Interference-aware Scheduling [AsPLOS 1 3]

— —
- N
Al T

Alone on Best Platform
Least Loaded
— Paragon

0.8f
0.6}
0.4¢
0.2f

=
S
®)
=
©
o
——
(%}
O
m
C
(@)
o
c
o
<
| -
o
>
(@)
Q
-
©
O
)
Q
7))

—
(-
.

—
S~

0 1000 2000 3000 4000 5000
Workloads

B 5K apps on 1K EC2 instances (14 server types)

Interference-aware Scheduling [ASPLOS"13]

'—l P—I
- (N
T T

Alone on Best Platform
Least Loaded

— Paragon

0.8

0.6}
0.4r
0.2F

=
P
O
=
o
o
——
9}
O
o
C
o
)
-
o
<
P —
o
>
o
Q
=)
©
O
o
Q
w

—
-~
.

)
—

0 1000 2000 3000 4000 5000
Workloads

B Better performance with same resources

®m Most workloads within 10% of ideal performance

Interference-aware Scheduling [AsPLOS 1 3]

— p—t
- ()
T

Alone on Best Platform
Least Loaded
— Paragon

0.8
0.6
0.4
0.2

Speedup over Alone on Best Platform

—
N
~
S~

0 1000 2000 3000 4000 5000
Workloads

B Better performance with same resources
®m Most workloads within 10% of ideal performance

m Can serve additional apps without the need for more HW

Increase System Utilization:
Challenges Ahead

® Isolation mechanisms
® Mechanisms for fine-grain sharing and priorities

= CPU, caches, memory, | /O

B Management policies
m Latency-critical Vs. batch apps
m Static Vs. dynamic, local Vs. global policies

m Interactions with provisioning and pricing models

® Implications for application development

Advancing Systems without Technology
Progress

B Approximate computing

Approximate Computing

® Now: high-precision outputs from deterministic HW
m Requires high operation count in software

m Requires high margins in hardware

B Approximate outputs are often sufficient

® Machine learning, computer vision, search, physical simulation, ...

B Projected benefits: from 20% to 200x

= Performance and/or energy

Taxonomy of Approximation Techniques

m Inexact SW on exact HW

m E.g., code perforation, Green
Exact SW on inexact HW
= E.g., Razor

Inexact SW on inexact HW

m E.g., probabilistic processors, Truffle

Approximation with neural networks
= E.g., IBM SyNAPSE, NPUs

Analog accelerators for approximation
m E.g., Intel ETANN, Inria NPU

Approximate Computing:
Challenges Ahead

® End-to-end management of errors
®m From user goals to HW and SW management

= What is the best way to spend the error margin?

m Tools

® Programming languages, compilers, runtime systems

m Digital Vs mixed-signal hardware

m Efficiency, practicality, robustness

Summary

m CMOS scaling is over & new technologies are not ready

m Potentially 2-3 decades of scaling using
m Locality-aware parallelism
m Specialization
m Reduce overprovisioning
® Increase utilization

m Approximate computing

B Cross-cutting research
= Must revisit both sides of the HW /SW interface

®m Must revisit both chip and system level architecture

Acknowledgements

® Mark Hill (U. of Wisconsin)
m Co-organizer of ISAT study in March 2012

m |SAT study participants

m 48 from academia and industry

m MAST & VLSI groups at Stanford

