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Computing is the Innovation Catalyst 

Science Government Commerce 

Healthcare Education Entertainment 

Faster, greener, cheaper 
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The Key Enabler 

  Turning exponentially increasing transistor counts into  
  Exponentially improving performance  
  At constant cost and power consumption 
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CMOS Scaling: The Past 

  Moore’s law (more transistors) + Dennard scaling (lower Vdd) 
  2.8x in chip capability per CMOS generation at constant power 
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[S. Keckler, 2011] 
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CMOS Scaling: The Present 

  Moore’s Law without Dennard scaling 
  1.4x in chip capability per generation at constant power 
  32x capability gap compared to past scaling 
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Datacenter Scaling 

  Cost reduction 
  Switch to commodity servers 
  Improved power delivery & cooling 

  Capability scaling 
  More datacenters 
  More servers per datacenter 
  Multicore servers 
  Scalable network fabrics 

one time trick 

PUE < 1.15 

@60MW per DC 

End of  voltage scaling 

>$300M per DC  
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Beyond CMOS?  

  Post CMOS technologies are not ready yet 
  Need to advance systems without technology progress 

  Need ~3 decades of scaling to cover fallow period 

80s 90s 00s 10s 20s 30s 40s 
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Advancing Systems without  
Technology Progress 

  Locality-aware parallelism 

  Specialization 

  Reduce overprovisioning 

  Increase utilization 

  Approximate computing 
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Parallelism wo/ Locality  Poor Scaling 

  Memory costs more than compute 
  16b INT mult:  0.5ns  2pJ 

  64b FP op:  1ns  50pJ 

  Shared cache:  10ns  1,000nJ 

  DRAM:   100ns  10,000nJ 

  It will only get worse 
  Poor scaling of long wires 

  Data-intensive applications 
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Locality-aware Parallelism 

  Scheduling for locality 
  Move work to data 

  Locality Vs balance Vs overheads 
  Conflicting constraints at large scale 
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Example: Pipeline Parallelism 

  Streaming workloads 
  App as a graph of stages communicating through queues 

  Each stage can be sequential or data-parallel 

  Arbitrary graphs allowed (multiple inputs/outputs, loops) 

  Well suited to many parallel apps & compilers 

Camera&Camera&Camera&Tiler& Sampler& Camera&Camera&Intersect&
Camera&Camera&Shade& Camera&Camera&

Shadow&
Intersect&

Frame&
Buffer&

Ray$tracing$pipeline$
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Scheduling Tradeoffs 
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Locality-Aware Dynamic Scheduling 

  Insight: use info available in application graph 
  Max parallelism: allow any core to work on any stage 

  Max locality: process intermediate data asap 

  Bounded footprint: account for use queues 

  Load balance: steal task without impacting locality 
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Locality-Aware Dynamic Scheduling 

  GRAMPS scheduler [PACT’11] 

  Breadth-first stage ordering: higher priority to consumers 

  Dequeue from high-priority first: good locality, small footprint 

  Steal low-priority first: good locality, less stealing 

  Backpressure to control footprint: full queue  block producers 
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Locality-Aware Dynamic Scheduling 

  On a 12-core, 24-thread x86 system 

  Perf gains: 17x over GPGPU, 2-5x over task-stealing & static 

  Energy gains: 22x over GPGPU, 5x over task-stealing & static  

  Differences become larger as we scale up  
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Locality-aware Parallelism: 
Challenges Ahead 

  Locality-aware scheduling for unstructured codes 
  E.g., collision detection, hash-join, … 

  Applications with low temporal locality 
  E.g., probabilistic inference, graph algorithms, … 

  Scheduling overheads at large-scale 
  E.g., >1K cores with fine-grain parallelism 
  HW scheduling: efficiency Vs flexibility 



18 

Advancing Systems without  
Technology Progress 

  Locality-aware parallelism 

  Specialization 

  Reduce overprovisioning 

  Increase utilization 

  Approximate computing 



19 

Specialization 
  Specialized cores are more efficient than general processor 

  In terms of energy and performance  

  Already the norm in mobile chips 
  Now appearing on server chips as well 

  Specialization flavors 
  Heterogeneous cores (e.g., big/little) 
  Specialized programmable cores (e.g., GPU, DSP) 
  Specialized functional units (e.g., SIMD, low-precision math) 
  Specialized fixed-function units (e.g., video and security engines) 
  Custom chip (ASIC) 
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Example: H.264 Transcoding [ISCA’10] 

  Lessons learned 
  High potential for efficiency gains  
  Multi-core or big/little cores are not enough 
  Amortize instruction overheads, maximize data reuse 
  Need extreme specialization & lots of area for highest gains 
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Specialization:  
Challenges Ahead 
  The design problem 

  Need fast & efficient design/verification of specialized units 

  The cost problem 
  Need to contain the cost of specialized units 

  The generality problem 
  Need to tradeoff efficiency Vs. flexibility and reuse 
  Flexibility is also essential for future proofing 

  Applications are a moving target 
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Balancing Efficiency & Flexibility 
  Insight: domain-specific accelerators 

  Specialize to data-flow & locality of common patterns 
  Flexibility through configurable compute 

  Example: convolutions in image, video, and vision processing 
  Common: convolutions as map-reduce computations over stencils 
  Differences: stencil dimensions and size, map and reduce operations 

Data-flow Map Reduce Stencil 

H.264 IME  2D convolution Abs difference Add 4x4 

H.264 FME 1D convolution Multiply Add 6 

SIFT DoG 2M matrix op Subtract -  

SIFT Extrema 1D convolution Compare And 3 

Demosaic interpolation  1D convolution Multiply Graph fusion 3 
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Balancing Efficiency & Flexibility 
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  Convolution engine [ISCA’13] 
  Custom register files for different access patterns 
  Configurable 10b ALUs for different convolution types 

  Efficiency: 2-3x worse area and energy of custom unit  
  But 8-15x better than SIMD engines, 100x better than multi-core 
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Software Bloat 

  Deep SW stacks needed for complex functionality 
  But few optimizations target cross-layer efficiencies 

  Challenge: functionality & ease of use without efficiency loss 

PHP 9,298,440 ms 51,090x 

Python 6,145,070 ms 33,764x 

Java 348,749 ms 1816x 

C 19,564 ms 107x 

Tiled C 12,887 ms 71x 

Vectorized 6,607 ms 36x 

BLAS Parallel 182 ms 1 

[S. Amarasinghe, 2011] 
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HW Bloat: 
Main Memory Power in Datacenters 

  Server power main energy bottleneck in datacenters 
  PUE of ~1.1  the rest of the system is energy efficient 

  Significant main memory (DRAM) power 
  25-40% of server power across all utilization points 

[U. Hoelzle and L. Barosso, 2009]  
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DDR3 Energy Characteristics 
  DDR3 optimized for high bandwidth (1.5V,  800MHz)  

  On chip DLLs &  on-die-termination lead to high static power 
  70pJ/bit  @ 100%, 260pJ/bit at 10% 

  LVDDR3 alternative (1.35V,  400MHz) 
  Lower Vdd  higher on-die-termination 
  Still disproportional 

  Need memory systems that consume 
     lower energy and are proportional 

  What metric can we trade for efficiency? 
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Memory Use in Datacenters 

  Online apps rely on memory capacity, density, reliability 
  Web-search and map-reduce 

  CPU or DRAM latency bound 

  Memory caching,  DRAM-based storage,  social media 

  Bound by network bandwidth 

  We can trade off bandwidth for energy efficiency  

CPU 
Utilization 

Memory BW 
Utilization 

Disk BW 
Utilization 

Large-scale analytics 88% 1.6% 8% 

Search 97% 5.8% 36% 

Resource Utilization for Microsoft Services under Stress Testing [Micro’11] 
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Mobile DRAMs for Datacenter Servers [ISCA’12] 

  Similar core, capacity, and latency as DDR3 
  Interface optimized for lower power & lower bandwidth (1/2) 

  No termination, lower frequency, faster power-down modes 

  Energy proportional & energy efficient 

5x 
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Mobile DRAMs for Datacenter Servers [ISCA’12] 

  LPDDR2 module: die stacking + buffered module design 
  High capacity + good signal integrity  

  5x reduction in memory power, no performance loss 
  Save power or increase capability in TCO neutral manner 

  Unintended consequences 
  Energy efficient DRAM  L3 cache power now dominates 

Search        Memcached-a, b SPECPower SPECWeb SPECJbb 

Memory Power 
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Reduce Overprovisioning: 
Challenges Ahead 

  Automatic cross-layer software optimizations 
  Static and dynamic  

  End-to-end HW design for resource efficiency 
  From efficient components to efficient full-systems 

  Linking resource efficiency and performance 
  Key requirement for management policies 
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Advancing Systems without Technology 
Progress 

  Locality-aware parallelism 

  Specialization 

  Reduce overprovisioning 

  Increase utilization 

  Approximate computing 
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Server Utilization in Datacenters 

  Servers dominate datacenter cost 
  CapEx and OpEx 

  Server resources are poorly utilized 
  CPUs cores, memory, storage  

61%$16%$

14%$

6%$

3%$

Servers&

Energy&

Cooling&

Networking&

Other&

[J. Hamilton, http://mvdirona.com]  

Total Cost of Ownership Server utilization 

[U. Hoelzle and L. Barosso, 2009]  
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Low Utilization 

  Primary reasons 
  Diurnal user traffic & unexpected spikes 
  Planning for future traffic growth 
  Difficulty of designing balanced servers 

  Higher utilization through workload co-scheduling 
  Analytics run on front-end servers when traffic is low 
  Spiking services overflow on servers for other services 
  Servers with unused resources export them to other servers 

  So, why hasn’t co-scheduling solved the problem yet?  
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Interference Poor Performance & QoS 
  Interference on shared resources 

  Cores, caches, memory, storage, network 
  Large performance losses (e.g., 40% for Google apps) 

  QoS issue for latency-critical applications 
  Optimized for for low 99th percentile latency in addition to throughput 
  Small fraction of strugglers can lead to large QoS degradation 

  Common cures lead to poor utilization 
  Limited resource sharing  
  Exaggerated reservations 
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Datacenter Scheduling  

  Two obstacles to good performance 
  Interference: sharing resources with other apps 
  Heterogeneity: running on suboptimal server configuration 

Scheduler 

System 
 State 

Metrics 

Apps 

Loss 
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Interference-aware Scheduling [ASPLOS’13] 

  Quickly classify incoming apps 
  For heterogeneity and interference caused/tolerated 

  Heterogeneity & interference aware scheduling 
  Co-schedule apps that don’t interfere much  

  Send apps to best possible server configuration 

  Monitor & adapt 
  Deviation from expected behavior signals error or phase change  

Scheduler App 
Classification 

System 
 State 

Interferece 

Heterogeneity 

Learning 

Metrics 

Apps 
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Fast & Accurate Classification 

  Cannot afford to exhaustively analyze workloads 
  High churn rates of evolving and/or unknown apps 

  Classification using collaborative filtering 
  Similar to recommendations for movies and e-commerce 
  Leverage knowledge from previously scheduled apps 
  Can classify accurately within 1 min from app arrival 

  For both interference and heterogeneity  

Interference 
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Interference-aware Scheduling [ASPLOS’13] 

  5K apps on 1K EC2 instances (14 server types) 
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Interference-aware Scheduling [ASPLOS’13] 

  Better performance with same resources 
  Most workloads within 10% of ideal performance 



41 

Interference-aware Scheduling [ASPLOS’13] 

  Better performance with same resources 
  Most workloads within 10% of ideal performance 
  Can serve additional apps without the need for more HW 

Gain 
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Increase System Utilization:  
Challenges Ahead 

  Isolation mechanisms 
  Mechanisms for fine-grain sharing and priorities 
  CPU, caches, memory, I/O 

  Management policies 
  Latency-critical Vs. batch apps 
  Static Vs. dynamic, local Vs. global policies 
  Interactions with provisioning and pricing models 

  Implications for application development 
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Advancing Systems without Technology 
Progress 
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Approximate Computing 

  Now: high-precision outputs from deterministic HW 
  Requires high operation count in software 

  Requires high margins in hardware 
  

  Approximate outputs are often sufficient 
  Machine learning, computer vision, search, physical simulation, … 

  Projected benefits: from 20% to 200x 
  Performance and/or energy 
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Taxonomy of Approximation Techniques 

  Inexact SW on exact HW 
  E.g., code perforation, Green 

  Exact SW on inexact HW 
  E.g., Razor 

  Inexact SW on inexact HW 
  E.g., probabilistic processors, Truffle 

  Approximation with neural networks 
  E.g., IBM SyNAPSE, NPUs 

  Analog accelerators for approximation 
  E.g., Intel ETANN, Inria NPU 
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Approximate Computing: 
Challenges Ahead 

  End-to-end management of errors 

  From user goals to HW and SW management 

  What is the best way to spend the error margin? 

  Tools 

  Programming languages, compilers, runtime systems 

  Digital Vs mixed-signal hardware 

  Efficiency, practicality, robustness 
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Summary 

  CMOS scaling is over & new technologies are not ready 

  Potentially 2-3 decades of scaling using 
  Locality-aware parallelism 
  Specialization 
  Reduce overprovisioning 
  Increase utilization 
  Approximate computing 

  Cross-cutting research 
  Must revisit both sides of the HW/SW interface 
  Must revisit both chip and system level architecture 
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