Bridging the Computation Gap in a Future of Massive Data

Fred Chong

Director, Greenscale Center for Energy-Efficient Computing Director, Computer Engineering UC Santa Barbara

Computation Gap

- Optimistic technology scaling assumptions
- "Internet of Things"

GREENSCALE

Greg Papadopoulos, keynote IGCC June 2012:

"\$1 trillion market for ubiquitous sensors."

Outline

Bridging the gap

Environmental Costs

Cultural change

Efficiency Gap

- IEE/Kavli Roundtable
- 40X efficiency gap in 13 years
- No single solution
 - Gains needed at many levels of the system

Solutions

- Eliminate Waste
 - Turn stuff off
 - Avoid overprovisioning
- Change the Rules
 - New Technologies
 - Approximate Computing
- Will give several examples
 About 20% savings each

Barely-Alive Servers

- Turn off microprocessors but allow other servers to use memory
- Decouple load variation from data variation

- Random disk writes are energy intensive (require higher speed to meet performance needs)
- Sequentially logging writes can defer high-speed operation

Targeted Thermoelectric Cooling

- Superlattice layer on microprocessor
- Acts as a Peltier
 heat spreader
 targeted at hot
 spots
- Avoids worst-case provisioning in datacenter-level cooling

[ISCA'11]

Heterogeneous 3D Phase-Change Memory

- Different operating temperatures in 3D stack
- Tailor GST mixture to operating temperature
- 10% memory energy savings

Computational Sprinting

Power & Temperature Response

Wenisch, U Mich

Phase-Change Heat Sink

PCM Heat Sink Prototype

- Aluminum foam mesh filled with Paraffin wax
 - Relatively form-stable; melting point near 55 C
 - Working on a fully-sealed prototype w/ thermocouples

Deep Memory Hierarchies

- Motivation: Hierarchy is very nonenergy-proportional
 - Existing technologies: faster flash, multi-speed & IDP disks
 - New byte-addressable technologies: PCM & STT-RAM
 - Deep hierarchy can improve energyproportionality
- Recent Progress:
 - Predict data location instead of search
 - Simpler design allows compact table to be recalibrated periodically (22% energy savings)

[IPDPS'14 (Best Paper)]

Memory De-duplication

32% avg memory savings on MPI apps
 – 60% max

GREENSCALE

[IPDPS'11]

Approximation

- Approximate de-duplication
- Approximate computation

 NPU 3.0X energy savings [Esmailzadeh 13]
- Guided approximation with information flow techniques

3D Beamforming in Datacenters

A Wireless Way Around Data Center Traffic Jams »

To battle information overload at data centers, researchers are testing a new option: highfrequency wireless links that can help move the data along during crunch times.

- Zheng and Zhao with Vahdat at Google
- 60 Ghz links with 2-6 Gbps

• Flexible BW for burst loads

[Sigcomm'12]

Datacenter Placement

Datacenter Placement Example

Electricity Rates

Temperature

Cost Breakdowns

Cost of Green Datacenters

[Goiri et al, ICDCS'11]

Bridging the Gap

- 40X in 13 years
- Assuming 20% improvements can be compounded:
 - Need a new idea deployed every 7-8 months!
 - Probably much worse!

Part II: Environmental Costs to Bridging the Gap

Server = SUV

- More precisely:
 - 80 billion terawatt-hr / yr = 6 million SUVs in carbon production (10 mpg, 11K miles/yr)

Warehouse Computing

- \$30B annual energy bill worldwide
- Energy starting to cost more than capital expenditures

Resource Use in Silicon Fabrication

- 1.6 kilowatt-hrs / cm²
- 20 liters water / cm²

- 3.3 billion active cell phone subscriptions
- (212 Billion wireless devices by 2020) [IDC 13]
- ~20 cm² / phone
- 106 billion kilowatt-hrs (recall that datacenters use 80 billion kwh annually)

Throughput

- 280 Million phones sold / quarter
- Average lifetime of a phone: 1.5-2 yrs
- Old phones sitting in drawers, but throughput of over 1 billion phones / yr
- 32 billion kilowatt-hrs / yr just for uproc

Other Impacts

- 400 billion liters of water
 - 160,000 olympic swimming pools
 - More than double annual global bottled water consumption
- 400 million kg of soil to remediate just the copper (more copper on surface than inside the earth!)

Biodegradable Materials

- Biodegradable plastics
 - Fire retardants are bad
- Organic LEDs / transistors

Microprocessor Reuse?

 Problem: obsolescence resulting from rapid improvements

Solution: microprocessor food chain

[IEEE Computer '07]

Example Applications

The BDTImark2000(tm) is a summary measure of signal processing speed. For more info and scores see

Lifetime Energy Savings

- Depends on die-size
 - Die sizes are getting smaller

Depends on in-use energy consumption

- Assume 3 hours of use per day
 - .5 W processors probably should be re-used
 - 20 W processor, upgrade!

Technical Challenges of Re-Use

- Form Factor
 - Can't put a Pentium in the space of an 8051
- Battery Life
 - Is adequate power consumption good enough?
 - Voltage scaling
- ISA compatibility
 - Some ISA are more efficient on specific workloads
 - May require extra cycles
 - Erode the efficiency of our re-use strategy

Design for Reuse

- Design for several applications and lifetimes, not just one
- More severe wearout
- Added overhead to support different applications
- Design for easier reprogramming
- Design for easier reclamation and retasking
 - form factor, wireless or serial communication

Standard building blocks

Reclamation Costs

- < \$7 cell phone
- Recycling surcharge + deposit

Cost (US \$)	Cell Phone**	Computer***
Collection*	6.00	23.50
Transportation	0.35	0.43
Sorting	-	3.50
Dismantling	0.03	2.75
Refining	0.32	7.87
Dispose of non-	0.01	0.83
hazardous waste		
Dispose of	0.03	5.00
hazardous waste		

*Average (cell phone: \$4 to \$8; computer: \$13 to \$34)

Results from survey conducted with fifteen private US electronic recycling firms *[Boon et al., 2000]

[Bhuie et al, 2004]

Handset Reuse

- Refurbished phones
 - Only millions captured
 - Political issues
- PDAs

- Learning tool / diary in elementary schools
- Parking permit / navigator
- Location beacon
- Shipping container tracking
- Just park benches?

Reuse Summary

- Silicon fabrication and disposal are serious environmental concerns
- Reuse is a challenging goal, but we have to face the impact of our exponentionally-growing computing demands

Part III: Cultural Change

Cultural Change

- Some sustainable technologies and practices exist, but managers and designers unaccustomed to the tradeoffs
- Need to develop frameworks and educate the next generation of technical leaders

Measuring Energy

- Coal-fired electric plants 35% efficient
- Electrical transmission lines 90% efficient
- Datacenter power distribution also optimized for peak
- Other inefficiencies
 - Server power supplies
 - Battery charger / battery efficiency

www.epa.gov/cleanenergy/energy-resources/ calculator.html

Life-Cycle Analysis

- Sustainable systems require a higherlevel analysis
 - Energy and carbon metrics
 - Supply chains, end-of-life
- Challenge: proprietary data
 - Study academic fabrication facilities
- Make friends with your local industrial ecologist!

Reacting to Policy

- Standards and policies
 - Energy-star, SPEC power
 - Standards need knowledgeable participants
- Companies need to know how to respond to legislation and standards
 - WEEE, RoHS, Energy-star

Caveat: Jevons Paradox

 Efficiency in coal-fired machines led to greater demand for coal

Jevons Paradox

- Demand for computing could be elastic
- Need to measure productivity

Closing Remarks

- Computing for massive data poses significant sustainability challenges
- Good technical problems, but many are multidisciplinary
- We need to train the next generation of multidisciplinary engineers

energy.cs.ucsb.edu

Acknowledgements

- Luiz Barroso, Urs Hoezle, Bill Weihl (Google)
- Partha Ragananthan (Google)
- Ricardo Bianchini (Rutgers)
- Roland Geyer (UCSB)
- Raj Amirtharajah, Venkatesh Akella (UC Davis)
- John Oliver (Calpoly)

