Chai: Collaborative Heterogeneous Applications for Integrated-architectures

IUAWEI

Juan Gómez-Luna¹, <u>Izzat El Hajj</u>², Li-Wen Chang², Víctor García-Flores^{3,4}, Simon Garcia de Gonzalo², Thomas B. Jablin^{2,5}, Antonio J. Peña⁴, and Wen-mei Hwu²

¹Universidad de Córdoba, ²University of Illinois at Urbana-Champaign, ³Universitat Politècnica de Catalunya, ⁴Barcelona Supercomputing Center, ⁵MulticoreWare, Inc.

Hewlett Packard Enterprise

Motivation

- Heterogeneous systems are moving towards tighter integration
 - Shared virtual memory, coherence, system-wide atomics
 - OpenCL 2.0, CUDA 8.0
- Benchmark suite is needed
 - Analyzing collaborative workloads
 - Evaluating new architecture features

Data Partitioning

🥮 UNIVERSIDAD 🖲 CÓRDOBA

Data Partitioning: Bézier Surfaces

• Output surface points are distributed across devices

3D Surface point processed

Tile of surface points processed in CPU

Tile of surface points processed in GPU

Data Partitioning: Image Histogram

Input pixels distributed across devices

Output bins distributed across devices

Data Partitioning: Padding

- Rows are distributed across devices
 - Challenge: in-place, required inter-worker synchronization

Data Partitioning: Stream Compaction

- Rows are distributed across devices
 - Like padding, but irregular and involves predicate computations

Data Partitioning: Other Benchmarks

- Canny Edge Detection
 - Different devices process different images
- Random Sample Consensus
 - Workers on different devices process different models
- In-place Transposition
 - Workers on different devices follow different cycles

Types of data partitioning

- Partitioning strategy:
 - Static (fixed work for each device)
 - Dynamic (contend on shared worklist)
 - Flexible interface for defining partitioning schemes
- Partitioned data:
 - Input (e.g., Image Histogram)
 - Output (e.g., Bézier Surfaces)
 - Both (e.g., Padding)

Fine-grain Task Partitioning

Execution Flow

Fine-grain Task Partitioning: Random Sample Consensus

Data partitioning: models distributed across devices

NIVERSIDAD Ð CÓRDOBA

Task partitioning: model fitting on CPU and evaluation on GPU

Fine-grain Task Partitioning: Task Queue System

UNIVERSIDAD D CÓRDOBA

Coarse-grain Task Partitioning

Coarse-grain Task Partitioning: Breadth First Search & Single Source Shortest Path

SSSP performs more computations than BFS which hides communication/memory latency

Coarse-grain Task Partitioning: Canny Edge Detection

Data partitioning: images distributed across devices

UNIVERSIDAD D CÓRDOBA

Task partitioning: stages distributed across devices and pipelined

Benchmarks and Implementations

Collaboration		Short	Benchmark	Implementations	
Pattern		Name			
Data Partitioning		BS	Bézier Surface	 OpenCL-U 	
		CEDD	Canny Edge Detection		
		HSTI	Image Histogram (Input Partitioning)	• OpenCL-D	
		HSTO	Image Histogram (Output Partitioning)		
		PAD	Padding	 CUDA-U 	
		RSCD	Random Sample Consensus		
		SC	Stream Compaction	• CUDA-D	
		TRNS	In-place Transposition		
Task Partitioning	Fine- grain	RSCT	Random Sample Consensus	• CUDA-U-Sim	
		TQ	Task Queue System (Synthetic)		
		TQH	Task Queue System (Histogram)	• CUDA-D-Sim	
	Coarse- grain	BFS	Breadth-First Search		
		CEDT	Canny Edge Detection		
		SSSP	Single-Source Shortest Path		

ILLINOIS

Benchmark Diversity

DATA PARTITIONING						
Benchmark	Partitioning Granularity	Partitioned Data	System-wide Atomics	Load Balance		
BS	Fine	Output	None	Yes		
CEDD	Coarse	Input, Output	None	Yes		
HSTI	Fine	Input	Compute	No		
HSTO	Fine	Output	None	No		
PAD	Fine	Input, Output	Sync	Yes		
RSCD	Medium	Output	Compute	Yes		
SC	Fine	Input, Output	Sync	No		
TRNS	Medium	Input, Output	Sync	No		

FINE-GRAIN TASK PARTITIONING

Benchmark	System-wide Atomics	Load Balance
RSCT	Sync, Compute	Yes
TQ	Sync	No
TQH	Sync	No

UNIVERSIDAD D CÓRDOBA

COARSE-GRAIN TASK PARTITIONING

Benchmark	System-wide Atomics	Partitioning	Concurrency
BFS	Sync, Compute	Iterative	No
CEDT	Sync	Non-iterative	Yes
SSSP	Sync, Compute	Iterative	No

ILLINOIS

Evaluation Platform

- AMD Kaveri A10-7850K APU
 - 4 CPU cores
 - 8 GPU compute units
- AMD APP SDK 3.0
- Profiling:
 - CodeXL
 - gem5-gpu

Benefits of Collaboration

• Collaborative execution improves performance

Bézier Surfaces (up to 47% improvement over GPU only)

NIVERSIDAD Ð CÓRDOBA

Stream Compaction (up to 82% improvement over GPU only)

ILLINOIS

Benefits of Collaboration

Optimal number of devices not always max and varies across datasets

Padding (up to 16% improvement over GPU only)

Đ CORDOBA

Single Source Shortest Path (up to 22% improvement over GPU only)

Benefits of Collaboration

🕮 UNIVERSIDAD 🖲 CÓRDOBA

Benefits of Unified Memory

🗖 Kernel

Đ CORDOBA

Benefits of Unified Memory

Đ CÓRDOBA

■ Kernel ■ Copy Back & Merge ■ Copy To Device

ILLINOIS

Benefits of Unified Memory

UNIVERSIDAD D CÓRDOBA

■ Kernel ■ Copy Back & Merge ■ Copy To Device □ Allocation

C++ AMP Performance Results

🕮 UNIVERSIDAD 된 CÓRDOBA

Varying intensity in use of system-wide atomics

Diverse execution profiles

Benchmark Diversity

UNIVERSIDAD D CÓRDOBA

Benefits of Collaboration on FPGA

JNIVERSIDAD Ð CÓRDOBA

Source: Collaborative Computing for Heterogeneous Integrated Systems. ICPE'17 Vision Track.

Benefits of Collaboration on FPGA

JNIVERSIDAD Ð CÓRDOBA

Source: Collaborative Computing for Heterogeneous Integrated Systems. ICPE'17 Vision Track.

Released

- <u>Website:</u> chai-benchmarks.github.io
- <u>Code:</u> github.com/chai-benchmarks/chai

CHAI

- <u>Online Forum:</u> groups.google.com/d/forum/chai-dev
- Papers:

/ERSIDAD Ð CÓRDOBA

- Chai: Collaborative Heterogeneous Applications for Integrated-architectures. ISPASS'17.
- Collaborative Computing for Heterogeneous Integrated Systems. ICPE'17 Vision Track.

Chai: Collaborative Heterogeneous Applications for Integrated-architectures

Juan Gómez-Luna¹, <u>Izzat El Hajj</u>², Li-Wen Chang², Víctor García-Flores^{3,4}, Simon Garcia de Gonzalo², Thomas B. Jablin^{2,5}, Antonio J. Peña⁴, and Wen-mei Hwu²

¹Universidad de Córdoba, ²University of Illinois at Urbana-Champaign, ³Universitat Politècnica de Catalunya, ⁴Barcelona Supercomputing Center, ⁵MulticoreWare, Inc.

<u>URL</u>: chai-benchmarks.github.io

Thank You! 🙂

