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ABSTRACT 
This paper describes NoCBench, a benchmarking platform 

for evaluating the performance of Network-on-chip enabled 

Systems-on-chip.  NoCBench includes an initial set of 

standardized processing cores, NoC components, and 

application benchmarks for system-level design exploration 

and analysis.  It uses the NoCSim network on-chip 

simulator as the core simulation engine to execute these 

models and applications. We also present a simple case 

study to demonstrate the capability of the simulation 

environment. 

Categories and Subject Descriptors 
I.6.7 [Simulation Support Systems]: Simulation 

Environment, B.4.4 [Performance Analysis and Design 

Aids]: Simulation. 

General Terms 
Measurement, Performance, Verification. 

Keywords 
Network on Chip, Benchmarks, Simulator, NoCSim 

1. INTRODUCTION 
Network-on-Chip (NoC) based designs have garnered 

significant attention from both researchers and industry 

over the past several years.  The analysis of these designs 

has focused on broad topics such as NoC component micro-

architecture [7][[12][19], fault-tolerant communication, and 

system memory architecture. The effective analysis of these 

system parameters requires a simple, yet powerful network-

on-chip simulator which supports a large set of system 

components and application benchmarks. 

In this paper, we present NoCBench, a system analysis 

platform which includes standardized NoC components and 

application benchmarks for rapid prototyping of NoC-

enabled systems-on-chip (SoC).  We use NoCSim as the 

core simulation engine to execute NoCBench models and 

applications.  Using this platform, NoC and system 

researchers can easily plug-and-play existing components, 

or create new components, into a full SoC to analysis the 

effect of system design choices on application performance.   

A benchmark designed for NoC-based systems needs to 

quantify the performances of the following: 1) functional 

and storage blocks with corresponding network interface 

(cores), 2) the interconnect infrastructure (routers and 

links), and 3) the fully integrated system. NoC provides the 

underlying communication infrastructure that allows 

effective integration of functional, I/O, and storage blocks. 

Latency, throughput, reliability, energy dissipation, and 

silicon area requirements characterize such communication-

centric interconnect fabrics.  

Currently, network simulators like  Noxim[1], developed in 

SystemC [15], intend to explore the design space spanned 

by the different parameters of a NoC for the analysis and 

evaluation of a large set of quality indices including delay, 

throughput, energy consumption using synthetic traffic 

loads. However, current NoC simulators like Noxim do not 

support benchmark analysis, which is necessary to validate 

the superiority of one’s design compared to another for 

specific applications. Other NoC simulators like Garnet 

[14] are focused heavily on application execution, and 

therefore attempt to abstract away as many network details 

as possible for efficient execution. In most ease of 

reconfigurability and flexibility are sacrificed for simulator 

performance. 

The main contribution of our work is the design of an 

integrated simulation environment with an initial set of 

standardized NoC components and cores. It provides a 

single, cohesive simulation environment capable of 

integrating different embedded cores and network 

components for simulating them as a system is developed.  

Additionally, many design choices independent of system 

composition, such as network topology, can be easily 

explored. 

The rest of the paper is organized as follows: Section 2 

provides a brief overview of related work. In Section 3, we 

present the NoC architecture. Section 4 presents the 

proposed NoCBench platform followed by a case study in 

Section 5. Finally, Section 6 concludes the paper. 

2. RELATED WORK 
Traditionally, researchers have used custom simulators that 

can simulate traffic for use in Network on Chip research. 

Grecu et al. [2] brought the need for Network-on-Chip 

benchmarking into perspective and suggested compelling 

features of a NoC benchmarking environment. Although the 



authors proposed a large set of parameterized reference 

inputs for the NoC benchmarks: i.e. a) NoC functional 

cores composition (number of Processing Elements, number 

and size of memories, number of I/Os) b) Interconnect 

architectures c) Data communication requirements. There is 

no evidence of building such a platform for benchmarking. 

NoCBench is a step forward towards achieving an 

integrated platform for NoC design and verification.  

Nostrum is flexible NoC Simulator defining a 2D mesh 

topology, [4]. It focuses on communication primitives 

implementing protocol stack for link layer, network layer 

and session layer along with a buffer-less, loss-less switch. 

Garnet [14] is a network-on-chip performance simulator 

which is compatible with the GEMS [22] multiprocessor 

framework with Simics [16]. It can be interfaced with the 

Orion [17] network-on-chip power modeler when 

necessary. Garnet provides two modes of operation: a 

detailed “fixed pipeline” mode, and a high-level “flexible-

pipeline” mode. The fixed-pipeline mode models the micro-

architectural details of the on-chip router, while the 

flexible-pipeline mode allows the user to parameterize the 

number of router pipeline stages, and simply delays 

network traffic by that many cycles per router.  Although 

Garnet is an excellent tool due to its accuracy and inter-

operability with other system-level simulators, it does not 

provide full end-to-end models of the NoC (e.g. CNI, other 

infrastructure IP) within a single framework.  Additionally, 

only 2D-mesh topologies can be modeled with the Garnet 

simulator. 

The main shortcoming of all the simulators discussed above 

is, they either simulate the network or the cores. We still 

need a comprehensive system simulation and benchmarking 

platform. NoCBench is the first step towards bridging the 

gap by providing a full system simulation environment 

equipped with cores and network components. 

3. SYSTEM ARCHITECTURE 

3.1 System on Chip 
Modern embedded systems are often composed of many IP 

blocks including processors, memory blocks, DSPs and 

controllers. Traditionally these blocks have been connected 

using direct wiring or on chip buses. However, with 

growing integration and shrinking device size and increased 

chip size, wiring delays are becoming significant. Also, as 

we pack more cores and connect with buses, contention 

becomes a major bottleneck. To address these network on 

chip has emerged as a solution for communication on the 

chip [12][18]. Details of the Network on Chip architecture 

is discussed here. 

3.2 NoC Architecture 
Network on Chip architecture is inspired by the 

asynchronous communication paradigm of packet switched 

computer networks. With increased on chip wiring delay 

synchronized communication between the far ends of a 

large system on chip is impractical. Network on Chip tries 

to address this issue by introducing a globally asynchronous 

locally synchronous (GALS) paradigm. In NoC, 

communication takes place between cores using 

information packets. Packets are generated at the source 

and carried to the destination by intermediate routers. At 

the destination, the packet is decomposed into data and 

processed by the receiver. Clearly NoC architecture will 

have the following components. A Core to Network 

interface, Routers and Links. The following sections discuss 

the functional and architectural details of these components. 

3.2.1 Processing Cores 
Processing cores are the working components of the system 

on chip. Depending on the application performance 

requirements, the core can vary widely from a simple CPU 

and a collection of controllers and DSPs to very powerful 

processor cores with cache memory blocks. Cores can be 

designed independently of the communication infrastructure 

to minimize development cost. However, communication 

protocols and structures are specific to each processing 

core.  This requires an intermediate entity which interfaces 

the processing core to the network-on-chip.  This entity 

performs communication translation and other, secondary 

functions.  This is called CNI or core network interface. 

3.2.2 Core Network Interface (CNI) 
The Core Network Interface, or CNI, is the functional 

equivalent of a network card in standard multi-computer 

systems [8]. The CNI connects the IP cores to the network. 

Its primary job is to translate the raw information generated 

by the core into packets to be transmitted through the 

network and the reverse process for packets coming in from 

the network. In addition, a CNI can also perform system 

management tasks such as power management, fault 

detection, core test support, and system reconfiguration. 

The block diagram of an example CNI is given in Figure 1 
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Figure 1: A Simple Core Network Interface 

The CNI architecture assumed in this research provides 

simple traffic translation to enable inter-core 

communication across the network-on-chip. For more 



complex systems, other functionality may be added to this 

base model as necessary.  Other researchers present a 

thorough examination of additional functionality that may 

be added [8][9].  

3.2.3 Router 
The on-chip router is the most salient component in a 

Network on Chip. Similar to standard computer networks, 

the router’s job is to efficiently route packets through the 

network. A router mainly consists of the input channels to 

receive the packets, output channels for sending, a crossbar 

for switching and a routing logic for doing the routing. 

Generally the input and output channels are buffered. A 

simple router block diagram is illustrated in Figure 2. 

 

Control

L

i

n

k

L

i

n

k

B
u

ff
e

r

A
llo

c
a

ti
o

n

R
o

u
ti
n

g

V
A

+
S

W
A

C
ro

s
s
b

a
r

L
in

k
 W

ri
te

Routing Flow

Input Output

BufferBuffer

Crossbar

 

Figure 2: A Simple 5 Cycle Router Pipeline 

The router architecture used in this research follows the 

standard five stage pipelined, wormhole router proposed by 

various researchers [7][11][19]. In wormhole routing each 

packet is further split into units called flits. Each port has a 

set of input buffers, and each incoming flit is first stored in 

the appropriate input buffer.  If the incoming flit is a head 

flit, then a routing decision must be made so that the entire 

packet is forwarded to the appropriate output port.  Flits are 

then assigned an output virtual channel, and the crossbar 

switch is allocated for each flit based on utilization and 

fairness policies.  Finally, the flit traverses the crossbar 

switch and is sent through the appropriate output port. 

3.2.4 Links 
Links connect the routers and the cores via CNI. Due to the 

structure of NoC, the links are generally shorter compared 

to bus or dedicated wiring. Hence, often the links can be of 

higher bit width and 64, 128 even 256 bit wide links are 

common.  For NoC and system benchmarking purposes, all 

data flowing through links is assumed to require one cycle 

of latency. 

3.3 NoC Topologies and Routing 
A NoC can have different topologies and routing algorithms 

depending on application needs and available resources. 

We will discuss the most common and widely used 

topologies and routing algorithms in the following sections. 

3.3.1 Topology 
The most commonly used topologies in NoC research are 

2D Mesh and Torus topologies. However, other interesting 

topologies such as butterfly, fat-tree, and Gaussian 

networks have also been proposed [20]. The mesh and torus 

topologies are favored due to their regular structure and 

planar geometry and simplicity. Figure 3 illustrates the 

three common topologies, namely Torus, Mesh and 

Irregular. 
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Figure 3: Common Network Topologies 

System designers must select the appropriate topology for 

their expected application requirements, based on 

topological metrics such as link density and network 

diameter. 

3.3.2 Routing 
Routing in NoC depends on the topology. It can be table 

lookup based where each router has next hop information 

for every destination in the network or it can be geometry 

based like dimension ordered or XY routing. The third type 

of routing is called source routing, where the sender 

specifies all the intermediate nodes in the packet. Each 

routing technique differs in performance with respect to 

adaptability, average hop count, and flit header storage 

requirements. The performance of the system can vary 

greatly depending on the routing technique used. In this 

work, we analyze the table based and geometry based 

routing techniques. 

4. THE NoCBench PLATFORM 
The NoCBench platform consists of NoCSim, a flit 

accurate network on chip simulator plus a set of synthetic 

and real world benchmark applications. Both the simulator 

and the benchmark applications can be configured 

according to system needs. The simulator can support a 

variety of architectures as discussed in Section 3. Also, the 

benchmarks can be configured for the given architecture 

and system specification. In this section we describe the 

NoCSim simulation environment and the benchmarks in 

detail. 



4.1 NoCSim Simulator 
NoCSim is a flit accurate network on chip simulator written 

in SystemC [21]. It makes use of the SystemC simulation 

engine and behavioral level network component library for 

fast simulation. Figure 4 shows the organization of the 

NoCSim simulator in NoCBench. The Simulator consists of 

the following main units: the NoC generator, the component 

library, and the simulation engine. 

4.1.1 Network Generator 
This module reads a configuration file specified in XML 

format and generates the NoC using SystemC library 

modules. The configuration includes the topology, 

specification of parameters for the CNI, Router and Links. 

It can also specify fault simulation parameters, and the 

configuration can be extended according to the need for 

specification of additional properties. An example 

configuration can be found in Section 5.2. 

4.1.2 Network Component Library 
 The network component library is the core of the 

simulation system. In this library we have modeled the 

components of the NoC using SystemC. The router and the 

CNI can be configured to implement popular peak power 

management schemes like PowerHerd [7] and PC [11]. The 

system level model allows for fairly accurate and much 

faster simulation compared to detailed RTL simulation. 

Table 1 provides the details for the available modules in the 

component library.  

4.1.3 Configurable Core Library 
The configurable Core library provides SystemC models of 

IP cores. We have two types of core models in this library 

in the current version of the NoCBench Tool. 

Synthetic Cores: These cores can generate communication 

based on statistical traffic distributions or synthetic task 

graphs with communication. These types of cores do not 

generate meaningful traffic in the network and do not 

necessarily perform meaningful communication. However, 

these cores can be configured to produce network traffic 

that follows the expected high-level behavior in the 

network, which allows for generalized performance 

benchmarking of NoC components.  Statistical random 

number generators are used to mimic traffic distributions.  

Examples of statistical traffic patterns include uniformly 

distributed network traffic and self-similar traffic models. 
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Figure 4: NoCBench Execution Overview 

 

Real Cores: These are SystemC wrapped cores, typically 

implemented in either C++/C. The most common examples 

of these core implementations are instruction set simulators 

(ISS) for different processing cores. They also include 

cache and memory models. 

Currently, we have a simple RISC CPU modeled in 

SystemC. This model is a simple pipelined in-order 

processor that partially implements the RISC2000 ISA with 

a 3-stage pipeline, a MMX-type module, and a floating 

point unit. We call it SimpleRISC core [Figure 5]. The core 

has a structural, SystemC top module while the internal 

functions are implemented in a functional C++ model. This 

significantly increases the simulation speed. The processor 

core acts as a master providing an OCP (Open Core 

Table 1: Configurable Parameters of The Simulator 

Component Configuration parameters 

CNI Flit injection rate, message queue length. 

Router 
Number of ports, buffer lengths, number of 

virtual channels. 

Routing 
XY routing, table based routing, source 

routing. 

Link Bit widths. 



Protocol [13]) compliant port for communication with the 

CNI. 
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Figure 5: The SimpleRISC Core along with the CNI 

 

This port is connected internally to a soft arbiter that 

handles incoming/outgoing requests. This soft arbiter serves 

for future expansions (e.g. Interrupt Control). 
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Figure 6: On Chip Memory Core with CNI 

The SimpleRISC core also consists of a Cache Control Unit 

(CCU) shown in Figure 5. CCU implements a L1 

instruction and data cache for the processor. The cache is a 

detailed L1 model developed in C++ which provides 

accurate measurement of latency and is a cycle-accurate 

simulation of cache behavior.  

In addition to SimpleRISC, NoCBench consists of an on-

chip memory model and an L2 cache model. Both the L2 

model and the on chip memory model are soft 

implementations of their respective blocks. The 

modularized nature of the models allow the user to readily 

experiment with memory and cache sizes and other 

characteristics to discover the most efficient 

implementation for a given system. Figure 6 shows the 

block diagram of the memory model included in this 

version of the NoCBench tool. 

4.1.4 Simulation Engine 
The NoCSim simulation environment is compatible with 

any SystemC simulation engine. In our evaluation we have 

used the OSCI SystemC simulation engine. It is capable of 

very fast and accurate simulation in any platform and this is 

open source. 

4.2 Benchmarks 
The design of low-latency, high-bandwidth, low-power and 

area-efficient NoC is extremely complex due to the 

conflicting nature of these design objectives. The NoC must 

be co-designed with other chip components and its design 

must be evaluated with a total system perspective. Classic 

benchmarks are application oriented and do not exploit 

communication intensive architectures. Application sets 

with a heterogeneous nature, with respect to computation 

and communication, running on a NoC-based system are 

better candidates for validation. 

Benchmarks are now regularly used by compiler companies 

to improve not only their own benchmark scores, but real 

application performance. The use of application driven 

workload is essential to compare different designs and 

evaluate the system effects on performance characteristics 

of the NoC. The variability of injection rates and traffic 

patterns in real applications provide an excellent 

opportunity for implementing adaptive hardware in NoC.  

Benchmarks are designed to mimic a particular type of 

workload on a component or system. "Synthetic" 

benchmarks do this by specially-created programs that 

impose the workload on the component. "Application" 

benchmarks, instead, run actual real-world programs on the 

system. While application benchmarks usually give a much 

better measure of real-world performance on a given 

system, synthetic benchmarks still have their use for testing 

individual components, like a hard disk or networking 

device.  

Synthetic benchmarks cover the following aspects in a 

NoC: 1) Packets and Transactions (Delay, bandwidth, jitter, 

power consumption of individual packets and routing, 

switching, buffering, flow control of the network) 2) 

Congestion (Arbitration, buffering, flow control) 3) 

Temporal and Spatial Distribution (burst traffic scenarios, 

hot spot pattern detection) 4) Quality of Service 

(guaranteed throughput and latency). 5) Network Size 

(scalability of communication network) 

Application benchmark programs are modeled as 

communication task graphs exhibiting control and data 

dependencies. The processing cores mimic the real 

application as the generated data traffic matches the actual 

implementation of the application. The following metrics 

are available for analyzing the performance: 1) Application 

Run Time (Completion time of the application). 2) 

Application Throughput (The minimum period at which the 

input processing core injects data). 

In case study, presented in Section 5, we use matrix 

multiplication to benchmark the cores and the NoC. This 



matrix multiplication application creates sufficient network 

traffic for evaluating the network performance. Further, it 

exhibits a high degree of locality in instruction and data 

references. This makes it suitable to study the effects of 

varying the cache parameters. 

5. CASE STUDY 
To evaluate the efficacy of the proposed simulation 

platform we shall present a case study. First we will show 

the design of a NoC based system, followed by the 

configuration steps involved to simulate that design using 

the proposed platform. Then we present some of the 

simulation results as a glimpse of what the platform can 

provide. 

5.1 System Design 
For illustration purpose, we have designed a system 

consisting of 2 processing cores and 2 memory cores 

[Figure 7]. The memory is shared between the two 

processors and can be custom set. We connected the 

processors and the memory in a 2x2 2-Dimensional mesh 

topology. To exploit the nature of the globally 

asynchronous nature, we have set the operating frequency 

of the processor at 2 GHz and the NoC operating frequency 

at 1 GHz. Other relevant detail about the setup has been 

summarized in Table 2. 
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Figure 7: An Example 2 CPU 2 Memory Network On 

Chip Configuration 

We have divided the memory address space of both the 

processors equally among the two memory cores. However, 

they do not share any data in this design. Sharing of data 

would require coherence protocols which are not yet 

implemented in this design. 

5.2 System Configuration 
NoCSim can be configured to simulate a given design using 

a simple and straight forward XML configuration file. In 

the configuration file all the relevant details of the system 

design can be specified. The configuration required to 

simulate this design has been given in Figure 8. 

5.3 Sample Results 
NoCSim models all the components of the system using 

SystemC and hence has control over the complete system. 

Unlike other simulators, in NoCSim, along with network 

design parameters one can simulate architectural behaviors 

and get data on those. Table 3-5 illustrate the sample 

simulation run results. 

Table 3: Cache Results 

Hit Rate 67% 

Average Access Latency 309 ns 

 

Table 4: Simulation Speed 

Cycles Per Second 67k 

 

Table 5: Network Results 

Average Hop Latency 15 cycle 

Average End Latency 50 cycles 

Average Power 26 mW 

 

The power has been evaluated using the power model 

described in [11].  

6. CONCLUSION 
In this work, we have described the NoCBench framework 

using NoCSim, a SystemC-based network-on-chip 

simulator. NoCBench allows fast and accurate simulation of 

Network on Chip based SoC designs and is capable of 

simulating the full system. Hence NoCBench enables quick 

validation of design of each component of the system and 

the overall performance. An example case study illustrates 

the ease of simulation. 

Table 2: System Configuration Details for the 2 Processor Design 

 Instruction Cache Data Cache 

 Cache size Line size Associativity Cache size Line size Associativity 

CPU 1 8K 8 bytes 8 way 16k 8 bytes 8 way 

CPU 2 4k 8 bytes 8 way 16k 8 bytes 8 way 



To further enhance the usability of NoCBench, several 

steps will be taken that includes development of additional 

core library components that can allow a more diverse 

system setup. Secondly, a rich set of applications will be 

compiled for using in the validation process. This will 

enable the study of NoC performance in a realistic scenario. 

In addition, a more intuitive interface is being developed 

for seamless configuration and result analysis purposes. 
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