
NoCBench: A Benchmarking Platform for Network on Chip

Suman K. Mandal, Nikhil Gupta, Ayan Mandal, Javier Malave, Jason D. Lee and Rabi N. Mahapatra
Texas A&M University, College Station, TX 77843

{skmandal, ngupta, ayan, jmalave, jdlee, rabi}@cs.tamu.edu

ABSTRACT
This paper describes NoCBench, a benchmarking platform

for evaluating the performance of Network-on-chip enabled

Systems-on-chip. NoCBench includes an initial set of

standardized processing cores, NoC components, and

application benchmarks for system-level design exploration

and analysis. It uses the NoCSim network on-chip

simulator as the core simulation engine to execute these

models and applications. We also present a simple case

study to demonstrate the capability of the simulation

environment.

Categories and Subject Descriptors
I.6.7 [Simulation Support Systems]: Simulation

Environment, B.4.4 [Performance Analysis and Design

Aids]: Simulation.

General Terms
Measurement, Performance, Verification.

Keywords
Network on Chip, Benchmarks, Simulator, NoCSim

1. INTRODUCTION
Network-on-Chip (NoC) based designs have garnered

significant attention from both researchers and industry

over the past several years. The analysis of these designs

has focused on broad topics such as NoC component micro-

architecture [7][[12][19], fault-tolerant communication, and

system memory architecture. The effective analysis of these

system parameters requires a simple, yet powerful network-

on-chip simulator which supports a large set of system

components and application benchmarks.

In this paper, we present NoCBench, a system analysis

platform which includes standardized NoC components and

application benchmarks for rapid prototyping of NoC-

enabled systems-on-chip (SoC). We use NoCSim as the

core simulation engine to execute NoCBench models and

applications. Using this platform, NoC and system

researchers can easily plug-and-play existing components,

or create new components, into a full SoC to analysis the

effect of system design choices on application performance.

A benchmark designed for NoC-based systems needs to

quantify the performances of the following: 1) functional

and storage blocks with corresponding network interface

(cores), 2) the interconnect infrastructure (routers and

links), and 3) the fully integrated system. NoC provides the

underlying communication infrastructure that allows

effective integration of functional, I/O, and storage blocks.

Latency, throughput, reliability, energy dissipation, and

silicon area requirements characterize such communication-

centric interconnect fabrics.

Currently, network simulators like Noxim[1], developed in

SystemC [15], intend to explore the design space spanned

by the different parameters of a NoC for the analysis and

evaluation of a large set of quality indices including delay,

throughput, energy consumption using synthetic traffic

loads. However, current NoC simulators like Noxim do not

support benchmark analysis, which is necessary to validate

the superiority of one’s design compared to another for

specific applications. Other NoC simulators like Garnet

[14] are focused heavily on application execution, and

therefore attempt to abstract away as many network details

as possible for efficient execution. In most ease of

reconfigurability and flexibility are sacrificed for simulator

performance.

The main contribution of our work is the design of an

integrated simulation environment with an initial set of

standardized NoC components and cores. It provides a

single, cohesive simulation environment capable of

integrating different embedded cores and network

components for simulating them as a system is developed.

Additionally, many design choices independent of system

composition, such as network topology, can be easily

explored.

The rest of the paper is organized as follows: Section 2

provides a brief overview of related work. In Section 3, we

present the NoC architecture. Section 4 presents the

proposed NoCBench platform followed by a case study in

Section 5. Finally, Section 6 concludes the paper.

2. RELATED WORK
Traditionally, researchers have used custom simulators that

can simulate traffic for use in Network on Chip research.

Grecu et al. [2] brought the need for Network-on-Chip

benchmarking into perspective and suggested compelling

features of a NoC benchmarking environment. Although the

authors proposed a large set of parameterized reference

inputs for the NoC benchmarks: i.e. a) NoC functional

cores composition (number of Processing Elements, number

and size of memories, number of I/Os) b) Interconnect

architectures c) Data communication requirements. There is

no evidence of building such a platform for benchmarking.

NoCBench is a step forward towards achieving an

integrated platform for NoC design and verification.

Nostrum is flexible NoC Simulator defining a 2D mesh

topology, [4]. It focuses on communication primitives

implementing protocol stack for link layer, network layer

and session layer along with a buffer-less, loss-less switch.

Garnet [14] is a network-on-chip performance simulator

which is compatible with the GEMS [22] multiprocessor

framework with Simics [16]. It can be interfaced with the

Orion [17] network-on-chip power modeler when

necessary. Garnet provides two modes of operation: a

detailed “fixed pipeline” mode, and a high-level “flexible-

pipeline” mode. The fixed-pipeline mode models the micro-

architectural details of the on-chip router, while the

flexible-pipeline mode allows the user to parameterize the

number of router pipeline stages, and simply delays

network traffic by that many cycles per router. Although

Garnet is an excellent tool due to its accuracy and inter-

operability with other system-level simulators, it does not

provide full end-to-end models of the NoC (e.g. CNI, other

infrastructure IP) within a single framework. Additionally,

only 2D-mesh topologies can be modeled with the Garnet

simulator.

The main shortcoming of all the simulators discussed above

is, they either simulate the network or the cores. We still

need a comprehensive system simulation and benchmarking

platform. NoCBench is the first step towards bridging the

gap by providing a full system simulation environment

equipped with cores and network components.

3. SYSTEM ARCHITECTURE

3.1 System on Chip
Modern embedded systems are often composed of many IP

blocks including processors, memory blocks, DSPs and

controllers. Traditionally these blocks have been connected

using direct wiring or on chip buses. However, with

growing integration and shrinking device size and increased

chip size, wiring delays are becoming significant. Also, as

we pack more cores and connect with buses, contention

becomes a major bottleneck. To address these network on

chip has emerged as a solution for communication on the

chip [12][18]. Details of the Network on Chip architecture

is discussed here.

3.2 NoC Architecture
Network on Chip architecture is inspired by the

asynchronous communication paradigm of packet switched

computer networks. With increased on chip wiring delay

synchronized communication between the far ends of a

large system on chip is impractical. Network on Chip tries

to address this issue by introducing a globally asynchronous

locally synchronous (GALS) paradigm. In NoC,

communication takes place between cores using

information packets. Packets are generated at the source

and carried to the destination by intermediate routers. At

the destination, the packet is decomposed into data and

processed by the receiver. Clearly NoC architecture will

have the following components. A Core to Network

interface, Routers and Links. The following sections discuss

the functional and architectural details of these components.

3.2.1 Processing Cores
Processing cores are the working components of the system

on chip. Depending on the application performance

requirements, the core can vary widely from a simple CPU

and a collection of controllers and DSPs to very powerful

processor cores with cache memory blocks. Cores can be

designed independently of the communication infrastructure

to minimize development cost. However, communication

protocols and structures are specific to each processing

core. This requires an intermediate entity which interfaces

the processing core to the network-on-chip. This entity

performs communication translation and other, secondary

functions. This is called CNI or core network interface.

3.2.2 Core Network Interface (CNI)
The Core Network Interface, or CNI, is the functional

equivalent of a network card in standard multi-computer

systems [8]. The CNI connects the IP cores to the network.

Its primary job is to translate the raw information generated

by the core into packets to be transmitted through the

network and the reverse process for packets coming in from

the network. In addition, a CNI can also perform system

management tasks such as power management, fault

detection, core test support, and system reconfiguration.

The block diagram of an example CNI is given in Figure 1

Out msg

Queue

In msg

Queue

Packetize

De-Packetize

CONTROL

L

I

N

K

C

T

R

L

T
O

/F
R

O
M

 C
O

R
E

Buffer

Buffer

Figure 1: A Simple Core Network Interface

The CNI architecture assumed in this research provides

simple traffic translation to enable inter-core

communication across the network-on-chip. For more

complex systems, other functionality may be added to this

base model as necessary. Other researchers present a

thorough examination of additional functionality that may

be added [8][9].

3.2.3 Router
The on-chip router is the most salient component in a

Network on Chip. Similar to standard computer networks,

the router’s job is to efficiently route packets through the

network. A router mainly consists of the input channels to

receive the packets, output channels for sending, a crossbar

for switching and a routing logic for doing the routing.

Generally the input and output channels are buffered. A

simple router block diagram is illustrated in Figure 2.

Control

L

i

n

k

L

i

n

k

B
u

ff
e

r

A
llo

c
a

ti
o

n

R
o

u
ti
n

g

V
A

+
S

W
A

C
ro

s
s
b

a
r

L
in

k
 W

ri
te

Routing Flow

Input Output

BufferBuffer

Crossbar

Figure 2: A Simple 5 Cycle Router Pipeline

The router architecture used in this research follows the

standard five stage pipelined, wormhole router proposed by

various researchers [7][11][19]. In wormhole routing each

packet is further split into units called flits. Each port has a

set of input buffers, and each incoming flit is first stored in

the appropriate input buffer. If the incoming flit is a head

flit, then a routing decision must be made so that the entire

packet is forwarded to the appropriate output port. Flits are

then assigned an output virtual channel, and the crossbar

switch is allocated for each flit based on utilization and

fairness policies. Finally, the flit traverses the crossbar

switch and is sent through the appropriate output port.

3.2.4 Links
Links connect the routers and the cores via CNI. Due to the

structure of NoC, the links are generally shorter compared

to bus or dedicated wiring. Hence, often the links can be of

higher bit width and 64, 128 even 256 bit wide links are

common. For NoC and system benchmarking purposes, all

data flowing through links is assumed to require one cycle

of latency.

3.3 NoC Topologies and Routing
A NoC can have different topologies and routing algorithms

depending on application needs and available resources.

We will discuss the most common and widely used

topologies and routing algorithms in the following sections.

3.3.1 Topology
The most commonly used topologies in NoC research are

2D Mesh and Torus topologies. However, other interesting

topologies such as butterfly, fat-tree, and Gaussian

networks have also been proposed [20]. The mesh and torus

topologies are favored due to their regular structure and

planar geometry and simplicity. Figure 3 illustrates the

three common topologies, namely Torus, Mesh and

Irregular.

Torus MeshIrregular

Figure 3: Common Network Topologies

System designers must select the appropriate topology for

their expected application requirements, based on

topological metrics such as link density and network

diameter.

3.3.2 Routing
Routing in NoC depends on the topology. It can be table

lookup based where each router has next hop information

for every destination in the network or it can be geometry

based like dimension ordered or XY routing. The third type

of routing is called source routing, where the sender

specifies all the intermediate nodes in the packet. Each

routing technique differs in performance with respect to

adaptability, average hop count, and flit header storage

requirements. The performance of the system can vary

greatly depending on the routing technique used. In this

work, we analyze the table based and geometry based

routing techniques.

4. THE NoCBench PLATFORM
The NoCBench platform consists of NoCSim, a flit

accurate network on chip simulator plus a set of synthetic

and real world benchmark applications. Both the simulator

and the benchmark applications can be configured

according to system needs. The simulator can support a

variety of architectures as discussed in Section 3. Also, the

benchmarks can be configured for the given architecture

and system specification. In this section we describe the

NoCSim simulation environment and the benchmarks in

detail.

4.1 NoCSim Simulator
NoCSim is a flit accurate network on chip simulator written

in SystemC [21]. It makes use of the SystemC simulation

engine and behavioral level network component library for

fast simulation. Figure 4 shows the organization of the

NoCSim simulator in NoCBench. The Simulator consists of

the following main units: the NoC generator, the component

library, and the simulation engine.

4.1.1 Network Generator
This module reads a configuration file specified in XML

format and generates the NoC using SystemC library

modules. The configuration includes the topology,

specification of parameters for the CNI, Router and Links.

It can also specify fault simulation parameters, and the

configuration can be extended according to the need for

specification of additional properties. An example

configuration can be found in Section 5.2.

4.1.2 Network Component Library
 The network component library is the core of the

simulation system. In this library we have modeled the

components of the NoC using SystemC. The router and the

CNI can be configured to implement popular peak power

management schemes like PowerHerd [7] and PC [11]. The

system level model allows for fairly accurate and much

faster simulation compared to detailed RTL simulation.

Table 1 provides the details for the available modules in the

component library.

4.1.3 Configurable Core Library
The configurable Core library provides SystemC models of

IP cores. We have two types of core models in this library

in the current version of the NoCBench Tool.

Synthetic Cores: These cores can generate communication

based on statistical traffic distributions or synthetic task

graphs with communication. These types of cores do not

generate meaningful traffic in the network and do not

necessarily perform meaningful communication. However,

these cores can be configured to produce network traffic

that follows the expected high-level behavior in the

network, which allows for generalized performance

benchmarking of NoC components. Statistical random

number generators are used to mimic traffic distributions.

Examples of statistical traffic patterns include uniformly

distributed network traffic and self-similar traffic models.

XML

REPRESENTATION

NETWORK

GENERATION

N
E

T
W

O
R

K

C
O

M
P

O
N

E
N

T

L
IB

R
A

R
Y

MANUAL

CONFIGURATION

C
O

N
F

IG
U

R
A

B
L

E

C
O

R
E

L
IB

R
A

R
Y

GRAPH

SYSTEMC

SIMULATION

BENCHMARKS

OK?

REPORT

DONE

YES

NO

DESIGN

NoCSim

Figure 4: NoCBench Execution Overview

Real Cores: These are SystemC wrapped cores, typically

implemented in either C++/C. The most common examples

of these core implementations are instruction set simulators

(ISS) for different processing cores. They also include

cache and memory models.

Currently, we have a simple RISC CPU modeled in

SystemC. This model is a simple pipelined in-order

processor that partially implements the RISC2000 ISA with

a 3-stage pipeline, a MMX-type module, and a floating

point unit. We call it SimpleRISC core [Figure 5]. The core

has a structural, SystemC top module while the internal

functions are implemented in a functional C++ model. This

significantly increases the simulation speed. The processor

core acts as a master providing an OCP (Open Core

Table 1: Configurable Parameters of The Simulator

Component Configuration parameters

CNI Flit injection rate, message queue length.

Router
Number of ports, buffer lengths, number of

virtual channels.

Routing
XY routing, table based routing, source

routing.

Link Bit widths.

Protocol [13]) compliant port for communication with the

CNI.

C

N

I

RISC CPU

ICACHE

CCU

DCACHE

O

C

P

Cache

Interface

RISC CORE

Figure 5: The SimpleRISC Core along with the CNI

This port is connected internally to a soft arbiter that

handles incoming/outgoing requests. This soft arbiter serves

for future expansions (e.g. Interrupt Control).

Memory Block

C

N

I

O

C

P

MEMORY CORE

C

N

T

R

L

M M M

M M M

M M M

Figure 6: On Chip Memory Core with CNI

The SimpleRISC core also consists of a Cache Control Unit

(CCU) shown in Figure 5. CCU implements a L1

instruction and data cache for the processor. The cache is a

detailed L1 model developed in C++ which provides

accurate measurement of latency and is a cycle-accurate

simulation of cache behavior.

In addition to SimpleRISC, NoCBench consists of an on-

chip memory model and an L2 cache model. Both the L2

model and the on chip memory model are soft

implementations of their respective blocks. The

modularized nature of the models allow the user to readily

experiment with memory and cache sizes and other

characteristics to discover the most efficient

implementation for a given system. Figure 6 shows the

block diagram of the memory model included in this

version of the NoCBench tool.

4.1.4 Simulation Engine
The NoCSim simulation environment is compatible with

any SystemC simulation engine. In our evaluation we have

used the OSCI SystemC simulation engine. It is capable of

very fast and accurate simulation in any platform and this is

open source.

4.2 Benchmarks
The design of low-latency, high-bandwidth, low-power and

area-efficient NoC is extremely complex due to the

conflicting nature of these design objectives. The NoC must

be co-designed with other chip components and its design

must be evaluated with a total system perspective. Classic

benchmarks are application oriented and do not exploit

communication intensive architectures. Application sets

with a heterogeneous nature, with respect to computation

and communication, running on a NoC-based system are

better candidates for validation.

Benchmarks are now regularly used by compiler companies

to improve not only their own benchmark scores, but real

application performance. The use of application driven

workload is essential to compare different designs and

evaluate the system effects on performance characteristics

of the NoC. The variability of injection rates and traffic

patterns in real applications provide an excellent

opportunity for implementing adaptive hardware in NoC.

Benchmarks are designed to mimic a particular type of

workload on a component or system. "Synthetic"

benchmarks do this by specially-created programs that

impose the workload on the component. "Application"

benchmarks, instead, run actual real-world programs on the

system. While application benchmarks usually give a much

better measure of real-world performance on a given

system, synthetic benchmarks still have their use for testing

individual components, like a hard disk or networking

device.

Synthetic benchmarks cover the following aspects in a

NoC: 1) Packets and Transactions (Delay, bandwidth, jitter,

power consumption of individual packets and routing,

switching, buffering, flow control of the network) 2)

Congestion (Arbitration, buffering, flow control) 3)

Temporal and Spatial Distribution (burst traffic scenarios,

hot spot pattern detection) 4) Quality of Service

(guaranteed throughput and latency). 5) Network Size

(scalability of communication network)

Application benchmark programs are modeled as

communication task graphs exhibiting control and data

dependencies. The processing cores mimic the real

application as the generated data traffic matches the actual

implementation of the application. The following metrics

are available for analyzing the performance: 1) Application

Run Time (Completion time of the application). 2)

Application Throughput (The minimum period at which the

input processing core injects data).

In case study, presented in Section 5, we use matrix

multiplication to benchmark the cores and the NoC. This

matrix multiplication application creates sufficient network

traffic for evaluating the network performance. Further, it

exhibits a high degree of locality in instruction and data

references. This makes it suitable to study the effects of

varying the cache parameters.

5. CASE STUDY
To evaluate the efficacy of the proposed simulation

platform we shall present a case study. First we will show

the design of a NoC based system, followed by the

configuration steps involved to simulate that design using

the proposed platform. Then we present some of the

simulation results as a glimpse of what the platform can

provide.

5.1 System Design
For illustration purpose, we have designed a system

consisting of 2 processing cores and 2 memory cores

[Figure 7]. The memory is shared between the two

processors and can be custom set. We connected the

processors and the memory in a 2x2 2-Dimensional mesh

topology. To exploit the nature of the globally

asynchronous nature, we have set the operating frequency

of the processor at 2 GHz and the NoC operating frequency

at 1 GHz. Other relevant detail about the setup has been

summarized in Table 2.

R R

R R

CPU 1

CPU 2MEM 1

MEM 2

Figure 7: An Example 2 CPU 2 Memory Network On

Chip Configuration

We have divided the memory address space of both the

processors equally among the two memory cores. However,

they do not share any data in this design. Sharing of data

would require coherence protocols which are not yet

implemented in this design.

5.2 System Configuration
NoCSim can be configured to simulate a given design using

a simple and straight forward XML configuration file. In

the configuration file all the relevant details of the system

design can be specified. The configuration required to

simulate this design has been given in Figure 8.

5.3 Sample Results
NoCSim models all the components of the system using

SystemC and hence has control over the complete system.

Unlike other simulators, in NoCSim, along with network

design parameters one can simulate architectural behaviors

and get data on those. Table 3-5 illustrate the sample

simulation run results.

Table 3: Cache Results

Hit Rate 67%

Average Access Latency 309 ns

Table 4: Simulation Speed

Cycles Per Second 67k

Table 5: Network Results

Average Hop Latency 15 cycle

Average End Latency 50 cycles

Average Power 26 mW

The power has been evaluated using the power model

described in [11].

6. CONCLUSION
In this work, we have described the NoCBench framework

using NoCSim, a SystemC-based network-on-chip

simulator. NoCBench allows fast and accurate simulation of

Network on Chip based SoC designs and is capable of

simulating the full system. Hence NoCBench enables quick

validation of design of each component of the system and

the overall performance. An example case study illustrates

the ease of simulation.

Table 2: System Configuration Details for the 2 Processor Design

 Instruction Cache Data Cache

 Cache size Line size Associativity Cache size Line size Associativity

CPU 1 8K 8 bytes 8 way 16k 8 bytes 8 way

CPU 2 4k 8 bytes 8 way 16k 8 bytes 8 way

To further enhance the usability of NoCBench, several

steps will be taken that includes development of additional

core library components that can allow a more diverse

system setup. Secondly, a rich set of applications will be

compiled for using in the validation process. This will

enable the study of NoC performance in a realistic scenario.

In addition, a more intuitive interface is being developed

for seamless configuration and result analysis purposes.

7. REFERENCES
[1] http://noxim.sourceforge.net/

[2] Grecu, C.; Ivanov, A.; Pande, R.; Jantsch, A.; Salminen, E.;

Ogras, U.; Marculescu, R., "Towards Open Network-on-Chip

Benchmarks," First International Symposium on Networks-

on-Chip, 2007. NOCS 2007., vol., no., pp.205-205, 7-9 May

2007

[3] L. Chunho, M. Potkonjak, and W. H. Mangione-Smith,

"MediaBench: a tool for evaluating and synthesizing

multimedia and communications systems," in Thirtieth Annual

IEEE/ACM International Symposium on Microarchitecture,

1997. 1997, pp. 330-335.

[4] Zhonghai Lu, Rikard Thid, Mikael Millberg, Erland Nilsson,

and Axel Jantsch. NNSE: Nostrum network-on-chip

simulation environment. In Swedish System-on-Chip

Conference (SSoCC'03), April 2005.

[5] P. Guerrier and A. Greiner, "A generic architecture for on-

chip packet-switched interconnections," in Proc. Design,

Automation and Test in Europe Conference and Exhibition

(DATE), Paris, 2000, pp. 250-256.

[6] L. Benini and G. De Micheli, "Networks on chips: a new SoC

paradigm," IEEE Computer, vol. 35, pp. 70-78, 2002

[7] L. Shang, L.-S. Peh, and N. K. Jha, "PowerHerd: a distributed

scheme for dynamically satisfying peak-power constraints in

interconnection networks," IEEE Trans. on Computer-Aided

Design of Integrated Circuits and Designs, vol. 25, pp. 92-

110, 2006

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE Simulator SYSTEM "config.dtd">

<Simulator cycles="1000000" maxresponsetime="1000" quietmode="false">

<PowerModel tgpb="10000" pgpb="8" ebuffread="76" ebuffwrite="80" ecrossbar="83" elink="6"/>

<Network nvcs="3" buflen="8">

 <Node type="PElement" name="pe1">

 <PElement type="ocp" infifolen="8" outfifolen="8">

 <CNI msgqlen="4" reorder="false" type="ocp"></CNI>

 <CORE type="risc"></CORE>

 <ADDRSPACE> /* Defines the address maps for this core */

 <SEGMENT base="0x00000000" range="0x000fffff" target="mem1"></SEGMENT>

 <SEGMENT base="0x00100000" range="0xffffffff" target="mem2"></SEGMENT>

 </ADDRSPACE>

 </PElement>

 </Node>

 <Node type="PElement" name="pe1"> /* Similar to pe1 with different name and address map */ </Node>

 <Node type="PElement" name="mem2">

 <PElement type="ocp" infifolen="8" outfifolen="8" >

 <CNI msgqlen="4" reorder="false" type="ocp" flitinjectionrate="10"></CNI>

 <CORE type="memory"></CORE>

 </PElement>

 </Node>

 <Node type="PElement" name="mem1"> /* Same as mem1 */ </Node>

 <Node type="Router" name="router1"><Router type="generic" ports="3" infifolen="8" outfifolen="8"/> </Node>

 /* Similar declaration for other 3 routers */

 <Link src="pe1" dst="router1"/>

 /* Similar declaration for rest of the connections */

</Network>

</Simulator>

Figure 8: Sample Configuration for the System used in case study

http://noxim.sourceforge.net/
http://www.imit.kth.se/�xel/papers/2005/SSoCC-NNSE.pdf
http://www.imit.kth.se/�xel/papers/2005/SSoCC-NNSE.pdf

[8] P. Bhojwani and R. Mahapatra, "Core network interface

architecture and latency constrained on-chip communication,"

in Proc. IEEE Intl Symposium on Quality Electronic Devices

(ISQED), San Jose, 2006, pp. 358-363

[9] P. Bhojwani, J.D. Lee, and R.N. Mahapatra, “SAPP: Scalable

and Adaptable Peak Power Management in NoCs,”

Proceedings of Intl. Symposium on Low Power Electronics

and Design (ISLPED), 2007, pp. 340-345.

[10] P. Bhojwani, R. Mahapatra, E. J. Kim, and T. Chen, "A

heuristic for peak power constrained design of network-on-

chip (NoC) based multimode systems," in Proc. IEEE 18th

Intl Conf on VLSI Design, 2005, pp. 124-129.

[11] Y. Jin, E. J. Kim, and K. H. Yum, "Peak Power Control for a

QoS Capable On-Chip Network," in Proc. Intl. Conf. on

Parallel Processing, 2005, pp. 585-592.

[12] B. Towles and W. J. Dally, "Route packets, not wires: on-

chip interconnection networks," in Proc. ACM/IEEE Design

Automation Conference (DAC), 2001, pp. 684-689.

[13] OCP International Partnership. Open core protocol

specification, release 2.2, Jan 2007.

[14] A. Kumar, N. Agarwal, Li-Shiuan Peh, N.K. Jha, "A system-

level perspective for efficient NoC design," in Proceedings

IEEE International Symposium on Parallel and Distributed

Processing, (IPDPS) 2008. pp. 1-5.

[15] P.R. Panda, "SystemC - a modeling platform supporting

multiple design abstractions," in The 14th International

Symposium on System Synthesis, 2001, pp. 75-80.

[16] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,

G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, B.

Werner, "Simics: A full system simulation platform," in

Computer, vol.35, no.2, pp.50-58, 2002

[17] H.-S. Wang; X. Zhu; L.-S. Peh; S. Malik, "Orion: a power-

performance simulator for interconnection networks," in

Proceedings. 35th Annual IEEE/ACM International

Symposium on Microarchitecture, 2002. (MICRO-35), pp.

294-305.

[18] S. Borkar, “Thousand core chips: a technology perspective.”

in Proceedings of the 44th Annual Conference on Design

Automation. DAC '07, pp. 746-749

[19] Peh, L.-S.; W.J. Dally, "A delay model and speculative

architecture for pipelined routers," in The Seventh

International Symposium on High-Performance Computer

Architecture, 2001. HPCA, pp.255-266.

[20] P.P. Pande, C. Grecu, A. Ivanov, R. Saleh, G. De Micheli,

"Design, synthesis, and test of networks on chips," IEEE

Design & Test of Computers, vol.22, no.5, pp. 404-413,

2005.

[21] NoCSim, http://codesign.cs.tamu.edu/nocsim

[22] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,

M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and

D. A. Wood, "Multifacet's general execution-driven

multiprocessor simulator (gems) toolset," SIGARCH Comput.

Archit. News, vol. 33, no. 4, pp. 92-99, 2005.

[23] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanan,

M. Kandemir. "Design and Management of 3D Chip

Multiprocessors Using Network-in-Memory". International

Symposium on Computer Architecture, June, 2006.

http://codesign.cs.tamu.edu/nocsim

