Cache Capacity and Memory Bandwidth
Scaling Limits of Highly Threaded Processors

Jeft Stuecheli!?

Lizy Kurian John'

1Department of Electrical and Computer Engineering, University of Texas at Austin

2IBM Corporation Austin, TX

Abstract

As computer architects search for greater system perfor-
mance from increasing transistor budgets, diminished
returns from feature-size scaling have made performance
improvements for single-threaded programs more difficult.
As a result, designers have proposed various microarchi-
tectural techniques for parallel execution of multiple pro-
gram contexts within a single packaged processor.
However, as additional program contexts share the limited
resources of cache capacity and external memory band-
width, throughput becomes constrained. We investigate the
inflection point at which additional thread contexts begin
to decrease throughput and power efficiency. The SPEC
CPU 2006 floating point and integer workloads are evalu-
ated across a range of chip thread counts. Scaling projec-
tions based on the results of these microarchitectural
simulation are developed and compared against existing
hardware systems. The results are then used to propose
hardware/software systems that optimize the system
throughput and power efficiency in systems with a large
number of simultaneously executing program contexts.

1.0 Introduction

Computer system development is driven by increases in
system capability. New systems must have greater capa-
bility than previous designs to warrant development
expense. Over the past decades, much of this increased
capability was provided through greater system execution
performance. Smaller and faster transistors have enabled
greater performance through increases in single-threaded
execution speed.

Recently however, computer designers have been unable
to translate transistor technology improvements into single
instruction stream performance gains. This is due to an
increase in relative wire delay, single-thread scalability
issues, and increased power constraints due to leakage cur-
rent in smaller transistors.

Due to difficulties in increasing single instruction stream
performance, computer designers have proposed addi-
tional threads of execution to increase system throughput.
For a given amount of silicon, additional execution threads
have been implemented by a combination of multiple exe-
cution cores on one die, known as chip multi-processing
(CMP), and complex execution cores that manage more
than one thread of execution, including simultaneous
multi-threading (SMT) and hardware multi-threading
(HMT)[13].

The increased core count on a die, or packaged CPU, has
put pressure on two key resources: cache capacity and
memory bandwidth. As the execution bandwidth of a pro-
cessor module increases due to higher core count, memory
bandwidth climbs at a slower rate [19]. In addition, the
cache capacity available per thread of execution decreases
as more threads are packed into the same limited silicon.

The goal of this research is to investigate how the effects
of the constrained design resources compound as thread
counts increases. In general, we investigate the inflection
point where additional program contexts cause decreased
system throughput. Analysis also shows variation of this
point across a mix of workloads in the rate versions SPEC
CPU 2006 suite. Due to the workload dependant nature of
the system response, we investigate system-level optimi-
zation mechanisms that mitigate the performance loss by
detecting throughput limits. The optimization is also con-
sidered relative to power consumption.

1.1 Outline

This paper is structured as follows:

¢ System constraints: We investigate current and future
system cache and memory capabilities in Section 2.0.

¢ Simulation/Analytical analysis: A combination of
simulation and analysis is used to estimate the effects
on cache and memory constraints as additional pro-
gram threads are added. This is described in
Section 3.0.

¢ System measurement: Measurements are taken on
existing CMP/SMT systems. These will be compared
with the analytical findings in an effort to validate the
premise in Section 4.0.

¢ Benchmark Analysis: The various workload compo-
nents of the SPEC CPU 2006 [22] suite are investi-
gated and classified based on observed characteristics
in Section 5.0.

¢ System optimization: In Section 6.0, we focus on sys-
tem optimization techniques that can be enabled by
hardware/software features.



Last level
Number Number Last Level Cache
Processor Cores Threads Cache sharing group Cache per Thread Process
Sun UltraSPARC T2 8 64 4 MB 64 threads 64kB 65nm
Sun UltraSPARC T1 8 32 3 MB 32 threads 96kB 90nm
Intel Xeon 4 4 8§ MB 2 cores 2MB 45nm
Intel Itanium2 9000 2 4 24 MB 2 threads 12MB 65nm
AMD Barcelona 4 4 2-6 MB 4 cores 512kB-1536kB 65nm
IBM POWERG6 2 4 32 MB 4 threads 8MB 65nm

TABLE 1. Contemporary system cache size and thread count.[10][11][12][13][15][16]

2.0 Background and System Constraints

Socket capability is limited by physical constraints. The
socket constraints include the physical package and pin
count that are available to the chip. The limitations include
the number of communication pins, current delivery, heat
removal, and chip die size. These constraints can be
relaxed beyond typical limits by trading off cost. An
example is multiple fabricated chips packaged into one
socket using 2D packaging, such as multi-chip module
(MCM) technologies [18][12], or with emerging 3D
stacked die techniques [3][4][7]. These techniques com-
prise a means of generation stretching because the capa-
bilities of future mainstream technologies are realized with
some additional cost.

This study focuses on two specific socket-based con-
straints. The available silicon area is the first constraint.
Specifically, as more central processing units are fabri-
cated on a die, the available area for a cache is constant or
decreasing. The cache area can stay constant with addi-
tional CPUs by using two primary methods. First, the
yield of a silicon die can be improved using logic rather
than cache area by the addition of built-in redundancy in
the cache arrays. An example of this design trade-off is
seen in the dual-core Itanium2 processor in which the
yield of the very large die area is made possible by redun-
dant cache arrays [14]. Second, as logic pushes cache out
of the processor chip, constant cache area can be reestab-
lished using multiple-chip modules [18] and stacked chips
[12].

Table 1 contains the cache sizes and thread counts found in
recent commercial designs. We use these sizes as a guide-
line for analysis. Two very different design paradigms are
visible here. The IBM POWERG6 and Intel Itanium2 have
extremely large caches compared to the other designs. At
the other end of the spectrum, the Sun T1 and T2 designs
have extremely high thread counts and very modest cache
sizes. The Sun T1 and T2 machines hide the higher cache
miss rates behind many thread contexts and buffered band-
width to memory. For highly-threaded workloads this
proves very effective.

The second primary socket constraint is pin bandwidth. In
these studies, we focus specifically on bandwidth to main
memory. Various technologies provide higher bandwidth
for a given number of chip I/O at marginal additional cost.
One prominent method is to add a buffering chip between
the DRAM chips and the processor chip. This off-chip
memory buffer converts the relatively slow bi-directional

DRAM interface into multiple high speed uni-directional
interfaces. The Fully Buffered Dual Inline Memory Mod-
ule (FB-DIMM) standard uses differential pair interfaces
to run at six times the DRAM frequency [1]. The FB-
DIMMs increase bandwidth in two ways. First, each pin
drives three times the bandwidth of a traditional double-
data rate (DDR) pin. In addition, the FB-DIMM standard
allows for daisy-chaining of DRAM devices to achieve
higher pin utilization compared to raw DDR interfaces that
incur penalties dues to read/write bus turnaround and
switching between multiple DRAM devices that share a
common bus. Another high bandwidth memory technol-
ogy uses a buffering chip developed by IBM called syn-
chronous memory interface (SMI) [18]. In this interface, a
single-ended Elastic I/O [8] is used to drive each pin at
twice the DRAM frequency. Each pin carries two times
the traditional DDR pin bandwidth. In addition, the SMI
chip has multiple DRAM ports that feed the high band-
width uni-directional interface back to the CPU chip,
achieving higher pin utilizations at the processor chip
much like FB-DIMM. One disadvantage of the uni-direc-
tional interface compared to the standard DDR interface is
the fixed read and write bandwidth ratios. In DDR, all of
the pin bandwidth can be dedicated to one type of traffic,
whereas the uni-directional pin forces a specific mix of
inbound and outbound bandwidths. These interfaces are
built around a 2:1 mix of read and write traffic, which is an
approximation of the traffic ratio in many commercial and
technical workloads.

Ganesh et al. [2] provide the typical FB-DIMM bandwidth
characteristics relative to traditional direct-connect DDR
memory. The following table shows the sustained socket
bandwidth for contemporary processor chips running the
Stream Triad benchmark [21]. The highest sustained result
is achieved with the IBM SMI design. Currently, no
stream result has been published for an FB-DIMM based
system, but Intel Xeon systems are available with FB-
DIMM chipsets. In addition, the recently announced FB-
DIMM based UltraSparc T2 system claims bandwidth of
60 GB/sec. [11].

System Socket stream triad (GB/sec)
IBM POWERS5+ 12.6

AMD Quad FX-72 7.6

HP AlphaServer GS1280-1300 7.2

TABLE 2. Stream Triad benchmark results|[21]



System Socket stream triad (GB/sec)
Intel Core2 5.8
HP Integrity rx6600 (Itanium2) 5.6

Fujitsu/Sun_SPARC_Enterprise_M9000 35
Sun SPARC64 VI 45
TABLE 2. Stream Triad benchmark results|[21]

Beyond these two aspects, power consumption must also
be addressed. Power is not specifically modeled in the
simulation, but the effect can certainly drive system level
controls and optimization. Power consumption controls in
CMP, HMT, and SMT designs are useful for optimizing
power/performance tradeoffs. P.A.Semi has indicated per
core voltage and frequency control capability in its PA6T
design [23]. Per core voltage control of an aggressive
CMP design would be enhanced by integration of the Volt-
age Regulator Module (VRM) using 3D packaging [5].
Without 3D VRM integration, the cost of delivering many
voltage domains would make it infeasible. Power dissipa-
tion control for HMT and SMT systems are not feasible
through voltage rail control since the logic across threads
is tightly coupled. For these cases, footer transistor devices
can be used to shut off leakage from unused devices that
share voltage rails with active logic [9]. An example is
varying-off architects state of unused threads in a SMT
processor.

3.0 Simulation Based Analysis

The goal of this work is to assess how many threads a
socket can support in realistic Microarchitecture across a
mix of workloads. There is significant variation in the
throughput inflection point across different workloads.
Analysis of the workloads in conjunction with their inflec-
tion points exposes system optimization possibilities not
exploited by current system environments.

The experimental methodology centers around the cache
simulations of trace samples of the SPEC CPU2006 work-
loads. Each benchmark trace is simulated with a range of
cache sizes between 4 MB and 32 KB. The cache simula-
tions produce miss rates per instruction for the last level
cache, which are then extrapolated to memory bandwidth
requirements. The projected memory bandwidth is then
compared with available socket memory bandwidth.

3.0.1 Simulation Methodology

We use trace samples obtained from a full execution of
the SPEC CPU 2006 binaries using the IBM Aria method-
ology [30]. Performance counter and simulation data was
collected and analyzed to identify sample points that rep-
resent the overall performance of the full binary execution.
Representative traces of 100M instructions per workload
were obtained dynamically by instrumenting the binaries
and collecting instruction traces at the identified sample
points [27][28][29][30]. These traces were found from
experiments to correctly predict the performance of the
full binary in hardware when executed in a highly-detailed
and validated POWERS M1 simulator [27][28].

A cache simulator was used to generate a cache miss rate
for the collected traces over various cache sizes. The fol-
lowing cache sizes were simulated:

4 MB, 2 MB, 1 MB, 512k, 256k, 128k, 64k, 32k.

These sizes are chosen to reflect a maximum 4 MB last
level cache per thread with a doubling of the thread count
for each half-sized cache. This enables a projection range
of 1 to 128 threads sharing a 4 MB last level cache and
memory controller. The simulated data can also be used
for larger shared caches. For example, a 16 MB shared
cache would correspond to a system with 4 to 512 threads.
Our method is simplistic in that it assumes the threads do
not share any data and each thread gets an even fraction of
the last level cache. This assumption serves to isolate the
effects of capacity reduction. More destructive interfer-
ence between threads is not modeled. The “rate” version
of SPEC CPU is non-sharing and homogeneous, thus it
can be accurately projected given these modeling assump-
tions.

3.0.2 Scaling Projections

Each of the cache simulation results is used to extrapolate
the memory bandwidth requirements for a thread.

The cache miss rate is multiplied by the cache line size to
generate the bytes read from memory for each instruction:

Bytes g . .
Trsirnction MissRate,,,., .. % LineSize
The bandwidth requirements for each thread then becomes
the product of the bytes/instruction, CPU frequency, and
the instructions/cycle executed:

Bytes

——x F IPC
Insl‘ruction>< requencyx

B Wthread =

The total bandwidth required is then calculated as the sum
of the bandwidth for each thread in the socket:

BWrequired = ZBWthread

If the required socket bandwidth exceeds the available
memory bandwidth, the throughput is degraded:

BWsocket
>BW

require,

Throughput = min(l x NumThreads

For the baseline analysis, a line size of 64 bytes, 2GHz
clock rate, 40 GB/sec of memory bandwidth, and an IPC
of 1 are assumed.



3.1 Simulation Results

Scaling factors were generated for each workload in the
SPEC CPU2006 integer and floating point benchmarks
over the range of 1 to 128 threads. These are shown in
Table 3 and Table 4 on page 4.

The various workloads can be classified into three phases
or regions with respect to the scaling of additional execu-
tion threads, numbered as follows:

1. Increasing: The workload has not reached the socket
memory bandwidth limits. SPECint hmmer is an
example of this workload class for all simulated thread
counts.

2. Flat: The workload did not increase or decrease
throughput with the addition of threads. This repre-
sents a workload that is limited by the socket memory
bandwidth, but the reduced effective cache size for
each thread did not increase the miss rate. SPECint
libgquantum is an example of this case for all thread
counts.

3. Decreasing: The socket throughput decreased with the
addition of execution threads. These workloads are
memory bandwidth bound, and the reduced effective
cache size caused a data structure to overrun such that
an increase in miss rate is observed. SPECint mcf

and Fspec zeusmp are decreasing workloads at 16
threads and 32 threads, respectively.

Note that, once workloads leave region 1, they will alter-
nate between regions 2 and 3. This property is useful in
that the maximum throughput is detectable in the transi-
tion out of region 1.

Table 3 and Table 4 show the calculated scaling character-
istics of the integer and floating point workloads. The
regions are highlighted in the tables as shown below,:

‘ region | region 2 region 3

The cache footprint of many integer workloads in the
SPEC CPU 2006 suite is small enough such that the work-
loads scale up to the 128 threads. These workloads
(gobmk, h264ref, hmmer, perlbench, and
sjengq) are effectively CPU bound. In contrast, the mc £
and 1ibgquantum workloads reach a peak throughput at
only 16 threads. Most notably, mcf has a significant
decrease in throughput.

The floating point benchmarks exhibit much larger work-
ing sets compared to the integer suite. Only the gamess
workload scales up to 128 threads. These simulations
indicate that the floating point workloads have larger and
more varied dataset compared to the integer suite.

Number Threads
workload 1 2 4 8 16 32 64 128
astar 1 2 4 8 16 32 49.7 42.6
bzip2 1 2 4 8 16 32 64 70.3
gee 1 2 4 8 16 32 34.1 32.1
gobmk 1 2 4 8 16 32 64 128
h264ref 1 2 4 8 16 32 64 128
hmmer 1 2 4 8 16 32 64 128
libquantum 1 2 4 8 11.0 11.0 11.0 11.0
mcf 1 2 4 8 16 12.8 9.0 7.7
omnetpp 1 2 4 8 16 32 57.3 52.1
perlbench 1 2 4 8 16 32 64 128
sjeng 1 2 4 8 16 32 64 128
xalancbmk 1 2 4 8 16 32 64 98.9
GeoMean 1 2 4 8 15.5 27.1 432 58.0
Table 3: SPEC integer 2006 scaling results
Number Threads
workload 1 2 4 8 16 32 64 128
bwaves 1 2 4 8 9.7 9.6 9.3 9.1
cactusADM 1 2 4 8 16 32 28.6 13.7
calculix 1 2 4 8 16 32 44.5 39.4
dealll 1 2 4 8 16 32 323 29.1
gamess 1 2 4 8 16 32 64 128
gemsFDTD 1 2 4 8 16 22.1 21.4 20.2

Table 4: SPEC Floating point 2006 scaling results



Number Threads

workload 1 2 4 8 16 32 64 128
gromacs 1 2 4 8 16 32 64 67.5
Ibm 1 2 4 8 8.6 5.4 5.4 52

leslie3d 1 2 4 8 16 26.5 25.7 21.2
milc 1 2 4 8 16 17.5 17.4 17.4
namd 1 2 4 8 16 32 64 49.0
povray 1 2 4 8 16 32 64 38.2
soplex 1 2 4 8 12.9 12.0 11.5 10.9
sphinx3 1 2 4 8 16 30.1 28.4 26.7
tonto 1 2 4 8 16 32 64 72.7
wrf 1 2 4 8 16 32 50.4 44.8
zeusmp 1 2 4 8 16 32 44.0 26.2
GeoMean 1 2 4 8 14.8 23.6 30.3 27.1

Table 4: SPEC Floating point 2006 scaling results

4.0 System Measurements

The analysis in the previous section is based on the spe-
cific assumptions that limit system throughput. Specifi-
cally, rate throughput is limited by memory bandwidth as
the number of contexts grows. In this section we compare
hardware benchmark results against the projected results.
If the characteristics on the system measurements match
those of the simulation results across the mix of work-
loads, then we show that the assumptions of the model are
relevant with respect to actual system behavior.

For the system results to be useful for this correlation, they
must represent multiple threads that exhibit similar con-
straints. Specifically, multiple threads must share a last
level cache and the same memory interface. For these sys-
tems, we obtained SPEC CPU 2006 results for a range of
active thread counts.

The most obvious candidate for correlation is the Sun
UltraSparc T1 system [10]. This system has 32 threads
sharing a 3MB L2 cache and memory interface. The pri-
mary drawback of this system in this context is the low
instruction throughput of individual cores. The perfor-
mance of each thread may fall short of the model assump-
tions. This effect is containable, in that the inflection point
could simply move to a higher thread count. The inherent

mechanism of the model would still dominant once the
socket bandwidth limit has been reached. In addition, the
T1 has a single shared floating point unit for all 8 cores.
Therefore we only run the integer workloads. The recently
announced T2 [11] version does have floating point units
dedicated to each core, but that hardware is not currently
available in our lab.

For our T1 benchmark runs we used the following system
configuration shown in Table 5.

Parameter Value

Operating System SunOS 5.10 Generic_118833-17

CPU Frequency 1 GHz

Main Memory 8 GB DDR2 DRAM

Compiler Sun Studio 11
TABLE 5. UltraSparc T1 System Configuration

Measured T1 scaling results are shown below in Table 6.
We were unable to run all 32 thread tests due to system
memory constraints on our test system. but an important
point with regard to high thread count systems is that high
memory capacity is needed. The new Sun T2 supports this
larger memory capacity.

Active Thread Count
Workload 1 2 4 6 8 12 ‘ 16 32
perlbench 1.00 1.99 3.98 5.96 7.47 8.80 7.41
bzip2 1.00 1.97 3.79 5.55 5.39
gee 1.00 1.96 3.717 5.47 5.66
mcf 1.00 1.82 3.39 4.86 3.32
gobmk 1.00 2.00 3.99 5.96 7.92 10.78 13.70 20.17
hmmer 1.00 2.00 3.98 5.97 7.94
sjeng 1.00 2.00 3.99 5.97 7.96
libquantum 1.00 2.01 3.97 5.91 7.81 11.20 14.50 23.36
h264ref 1.00 2.00 3.97 5.93 7.85
omnetpp 1.00 1.91 3.70 5.47 7.19 9.79 12.27 14.33

TABLE 6. Measured T1 SPECINT scaling



Active Thread Count

Workload 1 2 4 6 8 12 ‘ 16 32

astar 1.00 1.96 3.80 5.58 7.30 9.77 9.45
xalancbmk 1.00 1.91 3.72 5.53 7.31
GM 1.00 1.96 3.83 5.67 6.75

TABLE 6. Measured T1 SPECINT scaling

In addition to the T1 system, we also compare submitted

results from the multi-core Intel Xeon Core2 based sys-
tems. The Xeon systems have a maximum of 4 threads per 45
socket. We do not expect to see decreased throughput with 4
only 4 threads, but the data is useful in validating the gen-
eral behavior across an additional architecture. We chose 8.5 4
the results published by Fujitsu Siemens Computers [22] 3 -
because the compiler and system configuration was kept 25
effectively constant across the 1, 2 and 4 core results for
integer and floating point runs. 21
1.5
The Xeon based Fujitsu Siemens Computers system con- 1
figuration is shown below in Table 7. 05
0
Parameter Value 1 2 4
Operating Sys- 64-Bit SUSE LINUX Enterprise Server 10, Kernel
tem 2.6.16.21-0.8-smp on an x86_64 —&—400.perlbench —m—401.bzip2
CPU Frequency | 2.667 GHz 403.gcc 429.mcf
Main Memory 16 GB (8x2 GB DDR2 PC2-5300F, 2 rank, CAS 5-5-5) —%—445.gobmk  —e—456.hmmer
—+—458.5] —=—462.i t
Compiler Intel C++ Compiler for IA32/EM64T application, 58.sjeng 62.lbquantum
Version 9.1 - Build 20070215, Package-ID: 464.h264ref 471.omnetpp
1 cc_p 9.1.047 473.astar 483.xalancbmk
Intel Fortran Compiler for IA32/EM64T application,
Version 9.1 - Build 20070215, Package ID:
1_fc p 9.1.043 FIGURE 1. Xeon SPECint scaling on 2.667 GHz
TABLE 7. Fujitsu Siemens Xeon system Fujitsu Siemens system

configuration.

Figure 1 shows the Xeon published SPECint scaling
results. The five benchmarks (gobmk, h264ref, hmmer,
perlbench, and sjeng) shown to scale well in Table 3
mimic the same linear characteristic as the Xeon results.
This is due to the low cache miss rates.



Figure 2 shows the Xeon published SPECfp scaling
results. A large fraction of the results exhibit scaling limi-
tations, which matches the simulation data.

45
4 o
3.5
3
25 7 = ad
2 N I,
1.5 ////////;—_—*———————-
1] -gﬁéiz:::::::§;:::::———_.
0.5
0
1 2 4
—e— 410.bw aves —m— 416.gamess
433.milc 434.zeusmp
—%—435.gromacs —@— 436.cactusADM
—+— 437 leslie3d —=— 444 namd
447 dealll 450.soplex
453.povray 454 calculix
459.GemsFDTD 465.tonto
470.lbm 481.w rf
—=— 482.sphinx3

FIGURE 2. Xeon SpecFp scaling on 2.667 GHz
Fujitsu Siemens system

5.0 Detailed Benchmark Analysis

A key aspect of this research is identifying the variation in
the benchmarks characteristics that would warrant more
sophisticated system optimization in thread scheduling
algorithms. The following analysis of an interesting set of
benchmark codes was based on instruction profiling using
the tprof tool. The tprof tool guided source code investiga-
tion by revealing the /ot regions of the benchmarks.

5.0.1 Ispec.sjeng (easy cache)

Sjeng is an example workload that has a very small
cache footprint. The miss rate remains constant as the
cache per thread decreases from 4 MB down to 32kB.
Therefore, additional execution resources do not stress the
available socket memory bandwidth. Both the Xeon and

T1 systems exhibited very close to ideal scaling as shown
in Table 8.

Number Threads
112 4 6 8
Expected 112 4 8
Scaling
T1 112 399 | 597 | 7.96
Xeon 1| 201 | 390

TABLE 8. Sjeng scaling

5.0.2 Ispec.libquantum (steady cache)

Analysis of 1ibguantum tprof data showed that most of
the execution time is spent sequentially operating on one
large 32 MB array. This 32 MB array contains a structure
with two 8 byte elements. Only one of these elements is
frequently updated, therefore only half of the array data is
actually referenced.

This following code segment shows the structure of each
array element.

struct quantum reg node struct

{
COMPLEX FLOAT amplitude; /* alpha j */
MAX UNSIGNED state; /* 3 %/

i

The code segment below contains the loop where ~70% of
execution time is spent. An additional ~15% is spent in
code with the same data access pattern. The dominant
memory access is to the ‘reg->node[i].state’ element. All
misses to this structure are due to Capacity misses.

for (i=0; i++)
if (reg->node[i].state & (1<<controll))
if (reg->node[i] .state & (1l<<control2))
reg->node[i] .state "= (l<<target);

i<reg->size;

Since the largest cache capacity per thread simulated is
only 4MB, libquantum garners only spatial locality from
the caches. The lower cache capacity per thread has no
affect on the cache miss rates. This explains the flat scal-
ing profile of the benchmark in the simulated results.
Adding threads shows a gain up until memory bandwidth
saturation.

The two hardware measurements show substantially dif-
ferent results (Figure 3). The Xeon system shows meager
gains. Conversely, the Sun T1 result shows increasing
throughput linearly up to 20 threads. The source of this
discrepancy lies in the miss access pattern. The sequential
access sequence to ‘node [i].state’ is highly prefetch-
able by the Xeon hardware facility. The T1 does not con-
tain prefetch hardware because it is designed to tolerate
memory misses through large numbers of threads. Inter-
estingly, the peak T1 result increases up to 32 threads,



exceeding the Xeon result by 67%. The T1 machine has a
claimed memory bandwidth of 20 GB/sec compared with
only 5.8 GB/sec measured on a Xeon system. Therefore,
the higher result on this memory bandwidth dominated
benchmark is expected.

30
25

20 /. /
15
10 -

ref ratio

0 ‘ ‘ ‘
1 2 4 6 8 12 16 20

Thread Count

—e— T1 —— Xeon

FIGURE 3. libquantum throughput comparison
between Sun T1 and Intel Xeon systems.

5.0.3 Ispec.mcf (negative returns)

The mcf benchmark operates on a complex and large
dataset relative to the other integer benchmarks. The algo-
rithm solves an optimization problem with successive
steps alternating between two routines [24]. In addition,
the amount of data accessed in each iteration is data
dependant and varies between iterations. This non-cache
resident access pattern produces a steady decrease in hit
rate as the effective cache size for the workload is reduced.
This increasing miss rate characteristic causes a decrease
in throughput as threads are added once the memory band-
width threshold is reached. The throughput for the three
system types is shown in Figure 4. The simulated result is
based on 20 GB/sec of memory bandwidth in order to
match the T1 capabilities. The simulated mcf throughput
peaks at 9.3 instructions/clock for a 16 thread system,
dropping to 6.4 instructions/clock for a 32 thread systems.
This behavior is also seen in the Sun T1 system runs. The
T1 throughput peaks at 6 threads of execution with a
throughput of 4.85 times the single threaded result. The
addition of two more threads decreases throughput to 3.22.
Additional thread context beyond 8 resulted in page
misses due to the limited amount of system memory in our
T1 test system.

]

Throughput

1 2 4 6 8 16 32

Thread Count

—&— simulated —— Xeon T

FIGURE 4. mcf scaling results across simulation
projections and the measures T1 and Xeon results

The close thread peak correlation between the simulated
and T1 systems provides good insight into the validity of
the simulation assumptions for this workload. The differ-
ences in magnitude of the results are due mainly to the dif-
ferences in the baseline throughput of the two systems.

6.0 System Optimization

The key observation of this analysis is rooted in diminish-
ing and negative returns with the addition of execution
threads. More importantly, the point at which this occurs
is variable between workloads. If this point was common
across workloads, a designer would simply build that ide-
ally sized system. If the system is designed around the
worst case workload (lowest thread scalability), we cannot
take advantage of the more cache friendly workloads’
scalability. Current computer systems do not take this
effect into account. Today’s systems utilize a greedy
approach, where as many threads as possible are dis-
patched. This provides an opportunity for optimization. If
the hardware limits the number of available threads for the
less scalable workloads, performance is not optimal for
more scalable workloads.

The most basic optimization would be to monitor IPC
across the threads. The scheduler would dispatch addi-
tional threads up until the IPC failed to increase. This tech-
nique is somewhat useful, but fails to monitor the memory
bandwidth utilization, which is the root cause driving the
throughput limits. This becomes more important in the
optimization of a mixed set of workloads. Simply trying
different combinations of threads and execution counts
would be invasive and unlikely to converge.

We propose a more sophisticated system where the mem-
ory bandwidth utilization of each thread is monitored.
With this information intelligent scheduling, decisions can
be made such that core execution and available memory
bandwidth can be effectively utilized.



6.1 Bandwidth Sensitivity

The primary simulation analysis was based on an assump-
tion of 40 GB/sec of socket memory bandwidth. In addi-
tion, a sensitivity study across a range of bandwidths was
evaluated. Results are shown in Table 9 and Table 10.
Bandwidths from 5 GB/sec to 50 GB/sec in 5 GB/sec
increments were used. A speedup was calculated for the

range of socket bandwidths for the SPEC CPU2006 inte-
ger and floating point suites. The speedup compares a sys-
tem with dynamic thread dispatch control to a greedy
dispatch where all available threads are used. For a system
with lower memory bandwidth the speedup reaches 1.54
and 2.17 on the integer and floating point results.

maximum number threads in system
bandwidth 1 2 4 8 16 32 64 128
5 GB/sec. 1 1 1 1.01 1.03 1.12 1.23 1.54
10 GB/sec. 1 1 1 1 1.02 1.06 1.15 1.33
15 GB/sec. 1 1 1 1 1.01 1.05 1.12 1.24
20 GB/sec. 1 1 1 1 1 1.03 1.10 1.20
25 GB/sec. 1 1 1 1 1 1.03 1.07 1.14
30 GB/sec. 1 1 1 1 1 1.03 1.07 1.14
35 GB/sec. 1 1 1 1 1 1.03 1.07 1.12
40 GB/sec. 1 1 1 1 1 1.02 1.05 1.10
45 GB/sec. 1 1 1 1 1 1.01 1.04 1.09
50 GB/sec. 1 1 1 1 1 1 1.03 1.07
Table 9: Integer Dynamic threads speedup vs socket bandwidth
maximum number threads in system
bandwidth 1 2 4 8 16 32 64 128
5 GB/sec. 1 1 1.01 1.02 1.09 1.26 1.40 2.17
10 GB/sec. 1 1 1 1 1.05 1.20 1.31 1.91
15 GB/sec. 1 1 1 1 1.01 1.10 1.20 1.64
20 GB/sec. 1 1 1 1 1 1.08 1.15 1.53
25 GB/sec. 1 1 1 1 1 1.07 1.14 1.47
30 GB/sec. 1 1 1 1 1 1.05 1.11 1.40
35 GB/sec. 1 1 1 1 1 1.04 1.09 1.35
40 GB/sec. 1 1 1 1 1 1.03 1.07 1.31
45 GB/sec. 1 1 1 1 1 1.03 1.07 1.28
50 GB/sec. 1 1 1 1 1 1.03 1.07 1.24

Table 10: Floating point Dynamic threads speedup vs socket bandwidth

6.2 Power Implications

The dynamic thread dispatch policy provides for ideal
throughput in a highly threaded design through tuning the
number of thread contexts to most efficiently utilize sys-
tem resources. The negative implications of ideal thread
contexts must be considered in the system’s design. Hard-
ware design can provide power control capabilities for
both active and static power consumption. Static power of
the leaky unused thread context and cores can be reduced
by independent voltage control[23] or power gating meth-
ods [9]. Active power can be reduced by decreasing clock
rates on memory bandwidth dominated workloads, such
that just enough traffic is generated to sustain bandwidth.

7.0 Conclusions and Future Work

We use simulation and analysis to investigate the inflec-
tion point at which additional thread contexts begin to

decrease throughput and power efficiency. The inflection
point was found to vary significantly depending on the
workload. The results indicate performance can be
improved by monitoring IPC across threads and schedul-
ing memory bandwidth consumption across threads. The
results also indicate that hardware control mechanisms and
decreased clock rates can improve power/performance.
Future work includes detailed simulation and power mod-
els to quantify the observed effects for a spectrum of pro-
cessor tradeoffs.
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